
F. Desprez - UE Parallel alg. and prog. 2017-2018 - 1

Parallel Linear
Algebra

Some references

• J. Demmel, K. Yelick, Berkeley
• H. Casanova, University of Manoa, Hawaï
• Parallel Algorithms, H. Casanova, A. Legrand, Y. Robert
• Parallel Programming – For Multicore and Cluster System, T. Rauber,
G. Rünger

2017-2018F. Desprez - UE Parallel alg. and prog. - 2

A quick history of dense linear algebra libraries
• Libraries like EISPACK (for eigenvalues problems)
• Then the BLAS (1) came up (1973-1977)
• Standard library with 15 operations (mainly) on vectors

- “AXPY” (y = α·x + y), dot product, scale (x = α·x), …
- Up to 4 versions for each (S/D/C/Z), 46 routines, 3300 LOC

• Goals
- Common pattern to simplify programming, readability, documentation
- Robustness, thanks to a clean coding (avoid over/underflow)
- Portability + efficiency thanks to specific implementations

• Why BLAS 1 ? These routines compute O(n1) operations over O(n1) data
elements

• Used in libraries such as LINPACK (for linear systems)

2017-2018F. Desprez - UE Parallel alg. and prog. - 3

A quick history of dense linear algebra libraries,
contd.

But BLAS-1 were not sufficient
- Ex: AXPY operation (y = α·x + y): 2n flops for 3n reads/writes
- Computational intensity = (2n)/(3n) = 2/3
- Too small to reach performance close to peak performance (reads/writes
dominate)

- Tough to vectorize (“SIMD’ize”) over supercomputers of the 1980’s

The BLAS-2 were invented (1984-1986)
- Standard library with 25 operations (mainly) on matrix/vector pairs
- “GEMV”: y = α·A·x + β·x, “GER”: A = A + α·x·yT, x = T-1·x
- Up to 4 versions for each (S/D/C/Z), 66 routines, 18K LOC

• Why BLAS 2 ? They perform O(n2) operations over O(n2) data elements
• Computational intensity is ~(2n2)/(n2) = 2

- Fine for vector machines, not for machines with caches

2017-2018F. Desprez - UE Parallel alg. and prog. - 4

A quick history of dense linear algebra libraries,
contd.

Next step: BLAS-3 (1987-1988)
- Standard library with 9 operations (mainly) on matrix/matrix pairs
- “GEMM”: C = α·A·B + β·C, C = α·A·AT + β·C, B = T-1·B
- Up to 4 version of each (S/D/C/Z), 30 routines, 10K LOC

• Why BLAS 3 ? They perform O(n3) operations over O(n2) data elements
• This leads to a computational intensity equal to (2n3)/(4n2) = n/2 !

- Good to machines with caches, other memory hierarchies
Code volume of BLAS1/2/3 (available on www.netlib.org/blas)
• Source: 142 routines, 31K LOC, Testing: 28K LOC

- Reference implementation (non optimized)
- Ex: 3 nested loops for the GEMM routine

• Much code optimized elsewhere
- Motivates the "automatic tuning" of BLAS

• Part of standard mathematical libraries (AMD AMCL, Intel MKL)

2017-2018F. Desprez - UE Parallel alg. and prog. - 5

A quick history of dense linear algebra libraries,
contd.
LAPACK – “Linear Algebra PACKage” – uses BLAS-3 (1989 – today)
• LAPACK content (summary)

- Algorithms we can transform in (almost) 100% BLAS 3
Linear systems: solve Ax = b for x
Least Squares: choose x to minimize ||Ax-b||2

- Algorithms that are » 50% BLAS 3
Eigenvalue problems: Find l and x where Ax = l x
Singular Value Decomposition, SVD

- Generalized problems (Ax = l Bx)
- Error bounds on all routines
- Many variants according to the structure of A (band, A = AT, …)

• How much code? (Release 3.7.0, 2016) (www.netlib.org/lapack)
- Source: 1586 routines, 500K LOC,
- Testing: 363K LOC

2017-2018F. Desprez - UE Parallel alg. and prog. - 6

A quick history of dense linear algebra libraries,
contd.

Is LAPACK parallel?
- Only if the BLAS are parallel (possible in shared memory)

ScaLAPACK – “Scalable LAPACK” (1995 – 2005)
- For distributed memory - uses MPI
- More complex data structures / algorithms than LAPACK
- Only a (small) subset of LAPACK features are available
- Available at www.netlib.org/scalapack

Plasma (2005-today)
• Parallel Linear Algebra Software for Multicore Architectures
• Multicore friendly
• Using a scheduler for DAGs
• Reduction of granularity of calculations
• Decrease in the number of dependencies

2017-2018F. Desprez - UE Parallel alg. and prog. - 7

Why should we avoid communications?

Algorithms have two costs
1. Arithmetic (flops)
2. Communications: moving data between

• Memory hierarchy levels (sequential case)
• Processors through a network or through a shared memory (parallel case)

CPU
Cache

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

2017-2018F. Desprez - UE Parallel alg. and prog. - 8

Why should we avoid communications
The exécution of an algorithm is the sum of three terms

- # flops * time_per_flop
- # words moved / bandwidth
- # messages * latency communication

• Time_per_flop << 1/ bandwitdth << latency
• Differences increase exponentially with the time

• Goal: design algorithms that avoid communications
• Between all the levels of memory hierarchies

• L1 L2 DRAM network, etc
• Not only hiding communications (overlap with arithmetic operations)

• acceleration £ 2x
• Any acceleration possible

Annual improvements
Time_per_flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%

2017-2018F. Desprez - UE Parallel alg. and prog. - 9

FIRST ALGORITHMS ON A RING
OF PROCESSORS

2017-2018F. Desprez - UE Parallel alg. and prog. - 10

Matrix-Vector product

y = A x

Let N be the size of the matrix

Int A[N][N];

int x[N];

for i = 0 to n-1 {

y[i] = 0;

for j = 0 to n-1

y[i] = y[i] + A[i,j] * x[j];

}

A[N][N]

x[N]

y[N]

n How to parallelize this operation ?

2017-2018F. Desprez - UE Parallel alg. and prog. - 11

Matrix-Vector product, contd.

A[N][N]

x[N]

y[N]

n Parallelism
n Computations on vector elements are independent
n Each computation needs one line of A and vector x

n In shared memory

#pragma omp parallel for private(i,j)
for i = 0 to n-1 {

y[i] = 0;
for j = 0 to n-1

y[i] = y[i] + A[i,j] * x[j];
}

2017-2018F. Desprez - UE Parallel alg. and prog. - 12

Matrix-Vector product, contd.

• In distributed memory, one possibility consists in giving each process a
copy of matrix A (needed rows) and vector x

• Each process declares a vector y of size N/n
- We suppose that n divides N

• Then, the code can be

load(a); load(x)

n = NUM_PROCS();

r = MY_RANK();

for (i=r*N/n; i<(r+1)*N/n; i++) {

for (j=0;j<N;j++)

y[i-r*N/n] = a[i][j] * x[j];

}

• It is “embarrassingly parallel”. What’s about the result of the computation?

2017-2018F. Desprez - UE Parallel alg. and prog. - 13

What’s about the result of the computation?
• After completion of the computation, each process owns one part of the result
• One might want to store the result in a file.

- Needs a synchronization such as to have the I/O performed in order
With the following code

if (r != 0)

recv(&token,1);

open(file, “append”);

for (j=0; j<N/n ; j++)

write(file, y[j]);

send(&token,1);

close(file)

barrier(); // optional

• One can also use a gather to get the whole vector on process 0
- Vector y can stay in the memory of one node

2017-2018F. Desprez - UE Parallel alg. and prog. - 14

What happens if the matrix is too large?

• The matrix may not fit in memory
• This is one of the motivations for using a distributed version of this

operation!

• In this case, each processor can only store part of the matrix A
• For the matrix-vector product, each processor can only store N/n rows

of the matrix
- Conceptually A[N][N]

- But the program declares A[N/n][N]

• This raises the problem of global indexes and local indexes

2017-2018F. Desprez - UE Parallel alg. and prog. - 15

Global and local indexes
When a table is split between processes

- Global indexes (I, J) that reference an element of the matrix
- Local indexes (i, j) that reference an element of the local array that
stores a part of the array

It is necessary to have a translation between the global and local
indices

- The algorithm must be thought in terms of global indexes
- And implement it in terms of local indexes

Global: A[5][3]
Local: a[1][3] on process P1

a[i,j] = A[(N/n)*rank + i][j]

N

P1

P0

P2 N / n

2017-2018F. Desprez - UE Parallel alg. and prog. - 16

Global indexes computation

Parallel codes implement translation functions
-GlobalToLocal()
-LocalToGlobal()

• Make a habit of implementing such functions
- Easy for ring algorithms with block distributions
- More complicated for other topologies and other data distributions

2017-2018F. Desprez - UE Parallel alg. and prog. - 17

Array distributions

We have the following distributions
- 2-D array A distributed
- 1-D array y distributed
- 1-D array x duplicated

Having distributed arrays allows to partition work between processes
- But this makes the code more complex because of translations of
global and local indices

- This may require synchronization to load / save the elements of an
array in a file

2017-2018F. Desprez - UE Parallel alg. and prog. - 18

Distribute every vector ?
• Up to now we have the vector x duplicated
• Generally, one tries to have all the tables involved in a same computation
distributed in the same way

- This simplifies the reading of the code without constantly keeping in
mind what is distributed and what is not
For example, the local indices for the array are different from the global indices,
but the local indices in array x are the same as the global indices. This leads to
bugs!

We would like each process to have
-N/n rows of the matrix A in an array A[N/n][N]
-N/n pieces of vector x in an array x[N/n]
-N/n pieces of vector y in an array y[N/n]

2017-2018F. Desprez - UE Parallel alg. and prog. - 19

Principle of the algorithm

A00 A01 A02 A03 A04 A05 A06 A07
A10 A11 A12 A13 A14 A15 A16 A17

P0
x0
x1

A20 A21 A22 A23 A24 A25 A26 A27
A30 A31 A32 A33 A34 A35 A36 A37

P1
x2
x3

A40 A41 A42 A43 A44 A45 A46 A47
A50 A51 A52 A53 A54 A55 A56 A57

P2
x4
x5

A60 A61 A62 A63 A64 A65 A66 A67
A70 A71 A72 A73 A74 A75 A76 A77

P3
x6
x7

Initial data distribution for:

N = 8
n = 4
N/n = 2

2017-2018F. Desprez - UE Parallel alg. and prog. - 20

Principle of the algorithm, contd.

A00 A01 ● ● ● ● ● ●
A10 A11 ● ● ● ● ● ●P0

x0
x1

● ● A22 A23 ● ● ● ●
● ● A32 A33 ● ● ● ●P1

x2
x3

● ● ● ● A44 A45 ● ●
● ● ● ● A54 A55 ● ●P2

x4
x5

● ● ● ● ● ● A66 A67
● ● ● ● ● ● A76 A77

P3
x6
x7

Step 0

2017-2018F. Desprez - UE Parallel alg. and prog. - 21

Principle of the algorithm, contd.

● ● ● ● ● ● A06 A07
● ● ● ● ● ● A16 A17

P0
x6
x7

A20 A21 ● ● ● ● ● ●
A30 A31 ● ● ● ● ● ●P1

x0
x1

P2
x2
x3

P3
x4
x5

Step 1

● ● A42 A43 ● ● ● ●
● ● A52 A53 ● ● ● ●

● ● ● ● A64 A65 ● ●
● ● ● ● A74 A75 ● ●

2017-2018F. Desprez - UE Parallel alg. and prog. - 22

Principle of the algorithm, contd.

● ● ● ● ● ● A26 A27
● ● ● ● ● ● A36 A37

P0
x4
x5

A40 A41 ● ● ● ● ● ●
A50 A51 ● ● ● ● ● ●

P1
x6
x7

P2
x0
x1

P3
x2
x3

Step 2

● ● A62 A63 ● ● ● ●
● ● A72 A73 ● ● ● ●

● ● ● ● A04 A05 ● ●
● ● ● ● A14 A15 ● ●

2017-2018F. Desprez - UE Parallel alg. and prog. - 23

Principle of the algorithm, contd.

● ● ● ● ● ● A46 A47
● ● ● ● ● ● A56 A57

P0
x2
x3

A60 A61 ● ● ● ● ● ●
A70 A71 ● ● ● ● ● ●

P1
x4
x5

P2
x6
x7

P3
x0
x1

Step 3

● ● A02 A03 ● ● ● ●
● ● A12 A13 ● ● ● ●

● ● ● ● A24 A25 ● ●
● ● ● ● A34 A35 ● ●

2017-2018F. Desprez - UE Parallel alg. and prog. - 24

Principle of the algorithm, contd.

● ● ● ● ● ● A66 A67
● ● ● ● ● ● A76 A77

P0
x0
x1

A00 A01 ● ● ● ● ● ●
A10 A11 ● ● ● ● ● ●

P1
x2
x3

P2
x4
x5

P3
x6
x7

Final step

● ● A22 A23 ● ● ● ●
● ● A32 A33 ● ● ● ●

● ● ● ● A44 A45 ● ●
● ● ● ● A54 A55 ● ●

The final exchange of the
vector x is not necessary for
the calculation

It makes it possible to find
the vector x distributed as at
the start of the algorithm

2017-2018F. Desprez - UE Parallel alg. and prog. - 25

Algorithm

float A[N/p][N], x[N/p], y[N/p];

r ¬ N/p

tempS ¬ x /* My part of the vector (N/n elements) */

for (step=0; step<p; step++) { /* p steps */

SEND(tempS,r)

RECV(tempR,r)

for (i=0; i<N/p; i++)

for (j=0; j <N/p; j++)

y[i] ¬ y[i] + a[i,(rank - step mod p) * N/p + j] * tempS[j]

tempS « tempR

}

n Uses two buffers
n tempS to send and tempR to receive

n In the example, the process of rank 2 in step 3 will work with a 2x2
block of the matrix that starts at column

((2 - 3) mod 4)*8/4 = 3 * 8 / 4 = 6;

2017-2018F. Desprez - UE Parallel alg. and prog. - 26

Some general principles

• Large data must be distributed on processes (which run on different
processors in a cluster)

- Requires arithmetic operations to compute indexes
- We write functions local_to_global () and
global_to_local ()

• Data must be loaded / written before / after calculations
- Requires synchronization between processes

• Trying to have distributed data structures in the same way to avoid
confusion between local and global indexes

• In the last algorithm, all the indexes are local

• Code is more complex than an OpenMP implementation
• more freedom in optimizations

2017-2018F. Desprez - UE Parallel alg. and prog. - 27

Performance analysis
• They are p identical steps
• At each step, each process performs three activities

• Compute, send and receive

• Compute
r2w (w: time to perform a += * operation)

• Receive
L + r b

• Send
L + r b

• Thus a total
T(p) = p (r2w + 2L + 2rb)

2017-2018F. Desprez - UE Parallel alg. and prog. - 28

Asymptotic performance

T(p) = p(r2w + 2L + 2mb)

• Speedup(p) = Ts/Tp = n2w / p (r2w + 2L + 2mb)

= n2w / (n2w/p + 2pL + 2pmb)

• Efficiency(p) = Ts/pTp = n2w / (n2w+ 2p2L + 2p2mb)

• For p fixed, when n is big, then Efficiency(p) ~ 1

Conclusion
The algorithm is asymptotically optimal

2017-2018F. Desprez - UE Parallel alg. and prog. - 29

Performance analysis, contd.
Remark that a naïve algorithm that will broadcast the whole vector to all the
processes to allow them to compute in a independent way will execute in the
following time

T(p) = (p-1)(L + nb) + pr2 w

• It could use a pipelined broadcast with
- The same asymptotic performance
- More simple
- Only waste a small fraction of memory (the vector)
- Less “elegant”

We have to evaluate the different solutions to find out which the most
performant one given the size of the target matrices, the parameters of the
target platform, …

2017-2018F. Desprez - UE Parallel alg. and prog. - 30

Back to the algorithm

float A[N/p][N], x[N/p], y[N/p];

r ¬ N/p

tempS ¬ x /* My part of the vector (N/n elements) */

for (step=0; step<p; step++) { /* p steps */

SEND(tempS,r)

RECV(tempR,r)

for (i=0; i<N/p; i++)

for (j=0; j <N/p; j++)

y[i] ¬ y[i] + a[i,(rank - step mod p) * N/p + j] * tempS[j]

tempS « tempR

}

n In this code, at each iteration, SENDs, RECVs and the computation
can be performed in parallel

n We can overlap communications and computations using non-
clocking SEND and RECV
n In MPI: MPI_ISend() et MPI_IRecv()

2017-2018F. Desprez - UE Parallel alg. and prog. - 31

Algorithm with overlaps

float A[N/p][N], x[N/p], y[N/p];

tempS ¬ x /* My part of the vector (N/n elements) */

r ¬ N/p

for (step=0; step<p; step++) { /* p steps */

SEND(tempS,r) || RECV(tempR,r) ||

for (i=0; i<N/p; i++) {

for (j=0; j <N/p; j++) {

y[i] ¬ y[i]+a[i,(rank-step mod p)*N/p+j]*tempS[j]

}

}

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 32

Best performance

• There are p identical steps
• At each step, each processor performs the three activities (compute, send,
receive) in parallel

- Compute: r2w
- Receive: L + rb
- Send: L + rb

• Thus a total time of

T(p) = p max(r2w , L + rb)

• Same asymptotic performance like before but better performance for small
values of n

2017-2018F. Desprez - UE Parallel alg. and prog. - 33

Hybrid parallelism
• Multicore architectures are standard now
• How to exploit multiple cores
• Option 1: Execute several process per node

- Can lead to additional overheads and more communications
- In fact, we will have network communications between processes inside
a node!

- MPI will not know that the processes are allocated to the same node
• Option 2: Execute a single multithreaded process per node

- Less overhead, fast communications inside a node
- Made by combining MPI with OpenMP
- Write an MPI program
- Add OpenMP pragmas around loops

2017-2018F. Desprez - UE Parallel alg. and prog. - 34

Hybrid parallelism

float A[N/n][N], x[N/n], y[N/n];
tempS ¬ x /* My part of the vector (N/n elements) */
for (step=0; step<p; step++) { /* n steps */

SEND(tempS,r)
|| RECV(tempR,r)
|| #pragma omp parallel for private(i,j)

for (i=0; i<N/p; i++)
for (j=0; j <N/p; j++)
y[i] ¬ y[i] + a[i,(rank - step mod p)*N/p+j]*

tempS[j]
tempS « tempR

}

• We call this hybrid parallelism
• Communication through the network between nodes
• Communication through shared memory within nodes

2017-2018F. Desprez - UE Parallel alg. and prog. - 35

Matrix multiplication on a ring

We can perform the matrix product with an algorithm close to the matrix-
vector product

- A matrix product is just the computation of n2 scalar products (not only
n)

We have three matrices A, B, and C
We want to compute C = A*B

The matrices are distributed so that each processor contains a block of rows
of each matrix

• Easy to do if matrices are stored in C because all matrix elements will
be stored contiguously in memory

2017-2018F. Desprez - UE Parallel alg. and prog. - 36

Data distribution

r

n

A C

B

2017-2018F. Desprez - UE Parallel alg. and prog. - 37

First step

r

n

A1,0
+=

A1,1xB1,0

B1,0

A1,1
+=

A1,1xB1,1

B1,1 B1,2 B1,3

+=
A1,1xB1,3

+=
A1,1xB1,2

A1,3A1,2

p=4

Processor P1

2017-2018F. Desprez - UE Parallel alg. and prog. - 38

Rotation of blocks of rows of B

Processor Pq r

n

Aq,0 Aq,1 Aq,3Aq,2

p=4

2017-2018F. Desprez - UE Parallel alg. and prog. - 39

Second step

Processor P1
r

n

A1,0

B0,0

A1,1

B0,1 B0,2 B0,3

A1,3A1,2
+=

A1,0xB0,0

+=
A1,0xB0,1

+=
A1,0xB0,3

+=
A1,0xB0,2

p=4

2017-2018F. Desprez - UE Parallel alg. and prog. - 40

Algorithm
A the end of the computation, each block Ci,j has a correct value:

Ai,0 B0,j + Ai,1 B1,j + ...

Basically, it is the same algorithm as the matrix-vector product, replacing the partial
scalar products with sub-matrix products (complex with loops and indices)

float A[N/p][N], B[N/p][N], C[N/p][N];

r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()
for (step=0; step<p; step++) { /* p steps */

SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)
for (j=0; j<N/p; j++)

for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR
}

2017-2018F. Desprez - UE Parallel alg. and prog. - 41

Algorithm

Step 0
l=0
i=0
j=0

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 42

Algorithm

Step 0
l=0
i=0
j=*

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 43

Algorithm

Step 0
l=0
i=*
j=*

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 44

Algorithm

Step 0
l=1
i=*
j=*

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 45

Algorithm

Step 0
l=*
i=*
j=*

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 46

Algorithm

Step 1
l=*
i=*
j=*

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 47

Algorithm

Step 2
l=*
i=*
j=*

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 48

Algorithm

Step 3
l=*
i=*
j=*

float A[N/p][N], B[N/p][N], C[N/p][N];
r ¬ N/p

tempS ¬ B

q ¬ MY_RANK()

for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r*N) || RECV(tempR,r*N)

|| for (l=0; l<p; l++)

for (i=0; i<N/p; i++)

for (j=0; j<N/p; j++)
for (k=0; k<N/p; k++)

C[i,l*r+j] ¬ C[i,l*r+j] + A[i,r((q - step)%p)+k] * tempS[k,l*r+j]

tempS « tempR

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 49

ALGORITHMS ON A GRID

2017-2018F. Desprez - UE Parallel alg. and prog. - 50

Bi-dimensional grid of processors

Let p = q2 processors

They can be seen as being arranged in the form of a square grid
- One can also have a rectangular grid

Each processor is identified by two indexes
- i: its row
- j: its column

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

2017-2018F. Desprez - UE Parallel alg. and prog. - 51

Bi-dimensional torus (2D torus)

We have links which connect each side of the grid

Each processor belongs to two different rings
- Possibility to use algorithms designed for ring topologies

Mono-directional or bi-directional links
- Depends on what we need for our
algorithm and/or physical resources

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

2017-2018F. Desprez - UE Parallel alg. and prog. - 52

Matrix product on a grid

Algorithm very studied!
- Operations used in many applications and other calculation kernels
- Implements several communication and computation problems in
grids and torus topologies

2017-2018F. Desprez - UE Parallel alg. and prog. - 53

Bi-dimensional matrix distribution

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

n Let ai,j be a element of the
matrix
n We denote by Ai,j (or Aij) the
block of matrix A assigned to Pi,j

2017-2018F. Desprez - UE Parallel alg. and prog. - 54

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,3

P1,3

P2,3

P3,0 P3,1 P3,2 P3,3

How are the matrices distributed ?

Develop a general routine used for other functions

Two options
• Centralized version

- When a function is called (eg: matrix product)
Input data is available on a single "master" machine (file?)
Input data must be distributed over other processes
The output data must be retrieved and returned to the master machine (file)

- Easier for the user
- Allows the library to make data distribution decisions seamlessly to the user
- Costly if you carry out sequences of operations!

2017-2018F. Desprez - UE Parallel alg. and prog. - 55

How are the matrices distributed ? Contd.
Distributed

- At the call of a function
- It is assumed that the data is already distributed
- Leaves data in already distributed outputs
- Can lead to having to redistribute data between calls for distributions match,
which is more complicated for the user and sometimes more expensive

- For example, it may be desired to change the block size between calls, or to
switch from a cyclic distribution to a non-cyclic distribution

Most software and libraries adopt the distributed approach
- More work for the user
- More flexibility and control

In the following, it is always assumed that the data are already distributed

2017-2018F. Desprez - UE Parallel alg. and prog. - 56

Four parallel matrix product algorithms

- Scalar products (Outer-Product)
- Cannon
- Fox
- Snyder

2017-2018F. Desprez - UE Parallel alg. and prog. - 57

Algorithm using scalar products
Matrix product algorithm

for i=0 to n-1

for j=0 to n-1

for k=0 to n-1

ci,j += ai,k * bk,j

Loops can be reversed !
for k=0 to n-1

for i=0 to n-1

for j=0 to n-1

ci,j += ai,k * bk,j

• Sequence of scalar products !

2017-2018F. Desprez - UE Parallel alg. and prog. - 58

Algorithm using scalar products, contd.
for k=0 to n-1

for i=0 to n-1

for j=0 to n-1

ci,j += ai,k * bk,j

C += x

K=0
B

A C += x

K=1
B

A

2017-2018F. Desprez - UE Parallel alg. and prog. - 59

Algorithm using scalar products, contd.

Thanks to the loop exchange, we can design a very simple parallel
algorithm working on a grid of processors

First step: see the algorithm in terms of blocks assigned to processors
(qxq grid)

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

for k=0 to q-1
for i=0 to q-1

for j=0 to q-1
Ci,j += Ai,k * Bk,j

2017-2018F. Desprez - UE Parallel alg. and prog. - 60

Algorithm using scalar products, contd.

At step k, process Pi,j needs Ai,k and Bk,j

- If k = j, then the process already holds the needed block of A
Otherwise it needs to ask it to Pi,k

- If k = i, then the process already holds the needed block of B
Otherwise, it needs to ask it to Pk,j

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

for k=0 to q-1
for i=0 to q-1

for j=0 to q-1
Ci,j += Ai,k * Bk,j

2017-2018F. Desprez - UE Parallel alg. and prog. - 61

Algorithm using scalar products, contd.

How the algorithm works

At step k
- Process Pi,k broadcasts its block of matrix A to all the processes of line i

True for every i
- Process Pk,j broadcasts its block of matrix B to all the processes of
column j
True for every j

There are q-1 steps

2017-2018F. Desprez - UE Parallel alg. and prog. - 62

Algorithm using scalar products, contd.

P00 A01 P02 P03
P10 A11 P12 P13
P20 A21 P22 P23
P30 A31 P32 P33

P00 P01 P02 P03
B10 B11 B12 B13
P20 P21 P22 P23
P30 P31 P32 P33

Step k=1 of the algorithm

2017-2018F. Desprez - UE Parallel alg. and prog. - 63

Algorithm using scalar products, contd.

// m = n/q

var A, B, C: array[0..m-1, 0..m-1] of real

var bufferA, bufferB: array[0..m-1, 0..m-1] of real

var myrow, mycol

myrow = My_Proc_Row()

mycol = My_Proc_Col()

for k = 0 to q-1

for i = 0 to m-1

BroadcastRow(i,k,A,bufferA,m*m) // Broadcast of A over rows

for j=0 to m-1

BroadcastCol(k,j,B,bufferB,m*m) // Broadcast of B over columns

// Matrix product over blocks

if (myrow == k) and (mycol == k) MatrixMultiplyAdd(C,A,B,m)

else if (myrow == k) MatrixMultiplyAdd(C,bufferA,B,m)

else if (mycol == k) MatrixMultiplyAdd(C, A, bufferB, m)

else MatrixMultiplyAdd(C, bufferA, bufferB, m)

2017-2018F. Desprez - UE Parallel alg. and prog. - 64

Performance analysis
1-port model

- Matrix product at step k can be executed at the same time as broadcast of
step k+1

- The two broadcasts execute in sequence
T(m,q) = 2 Tbcast + (q-1) max (2Tbcast, m3w) + m3w

w: elementary += * operation
Tbcast: execution time of a broadcast

Multi-port model
• Broadcasts can be executed in parallel

T(m,q) = Tbcast + (q-1) max (Tbcast, m3w) + m3w
• Execution time for the pipelined broadcast

Tbcast = (sqrt((q-2)L) + sqrt(m2 b))2

When n grows: T(m,q) ~ q m3 = n3 / q2

Asymptotic efficiency is 1!

2017-2018F. Desprez - UE Parallel alg. and prog. - 65

And then
• On a ring platform, we have already presented an asymptotically optimal
algorithm
• Why bother to have another algorithm (a little more complicated) also
asymptotically optimal?
• When n is big, it is not a problem
• But in reality, communication costs can not be neglected

• When n has a "moderate" size,
• When the ratio w / b is small
• Grid topology is beneficial in reducing communications costs!

2017-2018F. Desprez - UE Parallel alg. and prog. - 66

Ring versus grid
The ring algorithm gave a communication complexity of

n2 b
- At each step, the algorithm sends n2/p elements to neighboring processes and
there are p steps

For the algorithm on a grid
- Each step requires two broadcast of n2/p elements

We assume a 1-port model so as not to give too much advantage to the grid
- With a pipelined diffusion, this operation can be carried out at the same time
as sending n2/p elements of matrices between the neighbors in each ring
(unless n is really small)

- At each step, the algorithm performs twice as much communication as the ring
but with sqrt (p) fewer steps

Conclusion
• The algorithm on a grid has sqrt (p) less time in communications than the
algorithm on a ring

2017-2018F. Desprez - UE Parallel alg. and prog. - 67

Ring versus grid, contd.

Why is the algorithm on the grid better?

Reason: More communication links can be used in parallel
- Point-to-point communications replaced by broadcasts
- More communication links used at each stage

• On the other hand, if the underlying network is not really a grid, then
less advantage
• But the 2D distribution is always better than the 1D distribution,
whatever the underlying platform

2017-2018F. Desprez - UE Parallel alg. and prog. - 68

Ring versus grid, contd.
On a ring

• The algorithm communicates p blocks of matrices contain n2/p elements, p
times

• Total number of elements communicated: pn2

On a grid
- At each step, 2sqrt (p) blocks of n2/p elements are sent, each to sqrt(p)-1
process, sqrt(p) times

- Total number of elements communicated: 2sqrt(p)n2

Conclusion
• The algorithm with a grid sends less data than on a ring
• The use of a 2D distribution is better than a 1D distribution, even if the
underlying platform is a basic network

• A non-switched Ethernet network for example which is a network with a link
that is closer to a ring (p communication links) than a grid (p2 communication
links)

2017-2018F. Desprez - UE Parallel alg. and prog. - 69

Ring versus grid, conclusion

• Writing algorithms on a grid is a bit more complicated
• But generally gain more in terms of performance

2017-2018F. Desprez - UE Parallel alg. and prog. - 70

Cannon matrix product algorithm

Old algorithm
- Designed for systolic architectures (SIMD)
- Adapted to a 2D grid

The algorithm starts with a redistribution of matrices A and B
- Called “preskewing”

Then matrices are multiplied together

At the end, the matrices are re-distributed to find their initial distribution
- Called “postskewing”

2017-2018F. Desprez - UE Parallel alg. and prog. - 71

Cannon Preskewing

Matrix A
Each block of matrix A is shifted to the left until the process of the first
process column contains a block of the diagonal of the matrix

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

A00 A01 A02 A03
A11 A12 A13 A10
A22 A23 A20 A21
A33 A30 A31 A32

2017-2018F. Desprez - UE Parallel alg. and prog. - 72

Cannon Preskewing, contd.

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

B00 B11 B22 B33
B10 B21 B32 B03
B20 B31 B02 B13
B30 B01 B12 B23

Matrix B
Each block of matrix B is shifted upward until process of the first process
line contains a block of the diagonal of the matrix

2017-2018F. Desprez - UE Parallel alg. and prog. - 73

Cannon algorithm

• The algorithm runs in q steps
• At each step, each processor executes a multiplication of its block of A
and its block of B and adds it to its block of C
• Then the blocks of A are shifted to the left and the blocks of B are shifted
upwards
• C blocks do not move

Participate to the preskewing of A

Participate to the preskewing of B

For k = 1 to q

Local C = C + A*B

Horizontal shift of A

Vertical shift of B

Participate to the postskewing of A

Participate to the postskewing of B

2017-2018F. Desprez - UE Parallel alg. and prog. - 74

Steps of the Cannon algorithm
A00 A01 A02 A03
A11 A12 A13 A10
A22 A23 A20 A21
A33 A30 A31 A32

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B11 B22 B33
B10 B21 B32 B03
B20 B31 B02 B13
B30 B01 B12 B23

Local
computation
on processor

(0,0)

A01 A02 A03 A00
A12 A13 A10 A11
A23 A20 A21 A22
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B10 B21 B32 B03
B20 B31 B02 B13
B30 B01 B12 B23
B00 B11 B22 B33

Shifts

A01 A02 A03 A00
A12 A13 A10 A11
A23 A20 A21 A22
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B10 B21 B32 B03
B20 B31 B02 B13
B30 B01 B12 B23
B00 B11 B22 B33

Local
computation
on processor

(0,0)

2017-2018F. Desprez - UE Parallel alg. and prog. - 75

Performance analysis

Performance analysis with the 4-port model
- 1-port model is usually simpler

Symbols
- n: matrix size
- qxq: process grid size
- m = n / q
- L: communication start size
- b: time to communicate one element of a matrix
- w: basic arithmetic operation cost (+= . * .)

T(m,q) = Tpreskew + Tcompute + Tpostskew

2017-2018F. Desprez - UE Parallel alg. and prog. - 76

Pre/Post-skewing execution time
Horizontal shift

• Each row has to be shifted so as the diagonal of the matrix ends up on the first column
of processes

On a uni-directional ring
- The last line has to be shifted (q-1) times
- All the rows can be shifted in parallel

Total time: (q-1)(L + m2b)

On a bi-directional ring
• A row can be shifted on the right or on the left depending of the distance
- A row is shifted at most times
- All the rows can be shifted in parallel

Total time:

With the 4-port model, preskewing of A and B can occur in parallel (horizontal and
vertical shifts do not interfer)

Tpreskew = Tpostskew =

2017-2018F. Desprez - UE Parallel alg. and prog. - 77

Execution time for each step

At each step, each process executes one matrix multiplication mxm
- Computation time: m3w

At each step, each process sends/receives a block of size mxm in its row of
processes and in its column of processes

- All communications can occur simultaneously in the 4-port model
Time: L+ m2b

Then, the total time for the q steps is given by
Ttotal = q max (L + m2b, m3w)

2017-2018F. Desprez - UE Parallel alg. and prog. - 78

Performance model for the Cannon algorithm

This performance model can be easily adapted to other models
- If we suppose that we have mono-directional links, the becomes

(q-1)
- If we suppose that we have a 1-port model, there is a factor 2 to add in
front of communication terms

- If we suppose that there are no communication/computation overlap,
then the maximum becomes a sum

2017-2018F. Desprez - UE Parallel alg. and prog. - 79

Fox algorithm

This algorithm was originally developed to run on a hypercube topology
- But in fact it uses a grid, mapped on a hypercube

• It does not require any pre / post-skewing
• It is based on horizontal broadcast of the diagonals of matrix A and
vertical shifts of matrix B

• Sometimes also called the broadcast-multiply-roll algorithm

2017-2018F. Desprez - UE Parallel alg. and prog. - 80

Steps of the Fox algorithm
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

Initial
state

A00 A00 A00 A00
A11 A11 A11 A11
A22 A22 A22 A22
A33 A33 A33 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

Broadcast of
the 1st

diagonal of A
(stored in a
separate
buffer)

Local
computations

A00 A00 A00 A00
A11 A11 A11 A11
A22 A22 A22 A22
A33 A33 A33 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33
B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

2017-2018F. Desprez - UE Parallel alg. and prog. - 81

Steps of the Fox algorithm, contd.
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33
B00 B01 B02 B03

Shift of B

A01 A01 A01 A01
A12 A12 A12 A12
A23 A23 A23 A23
A30 A30 A30 A30

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

Local
computations

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33
B00 B01 B02 B03

A01 A01 A01 A01
A12 A12 A12 A12
A23 A23 A23 A23
A30 A30 A30 A30

B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33
B00 B01 B02 B03

Broadcast
of the 2nd

diagonal of
A (stored in
a separate
buffer)

2017-2018F. Desprez - UE Parallel alg. and prog. - 82

Fox algorithm

// No initial move

for k = 1 to q in parallel

Broadcast of the kth diagonal of A

Local computation C = C + A*B

Vertical shift of B

// No final move

• We need an additional array to store the diagonal blocks that are
received on processes
• This is the array used for multiplication A * B

2017-2018F. Desprez - UE Parallel alg. and prog. - 83

Snyder algorithm (1992)

• A bit more complicated that Fox et Cannon’s algorithms
• Start by transposing matrix B
• Uses reductions (sums) over rows of matrix C
• And shifts for matrix B

2017-2018F. Desprez - UE Parallel alg. and prog. - 84

Steps of the Snyder’s algorithm
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

Initial
state

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

Transpose
B

Local
computations

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B10 B20 B30
B01 B11 B21 B31
B02 B12 B22 B32
B03 B13 B23 B33
B00 B10 B20 B30
B01 B11 B21 B31
B02 B12 B22 B32
B03 B13 B23 B33

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

2017-2018F. Desprez - UE Parallel alg. and prog. - 85

Steps of the Snyder’s algorithm, contd.

Shift of B

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B01 B11 B21 B31
B02 B12 B22 B32
B03 B13 B23 B32
B00 B10 B20 B30

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B01 B11 B21 B31
B02 B12 B22 B32
B03 B13 B23 B32
B00 B10 B20 B30

Global sum
over rows

of C

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B01 B11 B21 B31
B02 B12 B22 B32
B03 B13 B23 B32
B00 B10 B20 B30

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

Local
computations

2017-2018F. Desprez - UE Parallel alg. and prog. - 86

Steps of the Snyder’s algorithm, contd.
C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

B02 B12 B22 B32
B03 B13 B23 B33
B00 B10 B20 B30
B01 B11 B21 B31

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

B02 B12 B22 B32
B03 B13 B23 B33
B00 B10 B20 B30
B01 B11 B21 B31

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

B02 B12 B22 B32
B03 B13 B23 B33
B00 B10 B20 B30
B01 B11 B21 B31

Shift of B

Global sum
over rows

of C

Local
computations

2017-2018F. Desprez - UE Parallel alg. and prog. - 87

Snyder’s algorithm
var A,B,C: array[0..m-1][0..m-1] of real

var bufferC: array[0..m-1][0..m-1] of real

Transpose B

MatrixMultiplyAdd(bufferC, A, B, m)

Vertical shift of B

For k = 1 to q-1

Global sum of bufferC over rows of proc in Ci,(i+k-1)%q
MatrixMultiplyAdd(bufferC, A, B, m)

Vertical shift of B

Global sum of bufferC over rows of proc in Ci,(i+k-1)%q

Transpose B

2017-2018F. Desprez - UE Parallel alg. and prog. - 88

Some storage strategies for dense matrices

0123012301230123

0 1 2 3 0 1 2 3

1) 1D Block columns 2) Columns 1D cyclic

3) Block columns 1D cyclic 4) Row versions of previous storage strategies

Generalization of the other
ones

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

6) Block 2D rows and columns
cyclic

0 1 2 3

0 1

2 3

5) Block 2D rows and columns

b

2017-2018F. Desprez - UE Parallel alg. and prog. - 89

Which data storage?

We have seen
- Block distributions
- 1D distributions
- 2D distributions
- Cyclic distributions

• What is the best choice?
• 2D block cyclic distribution is the Swiss army knife of the dense matrix
distribution!

2017-2018F. Desprez - UE Parallel alg. and prog. - 90

2-D block-cyclic distribution

Goal:
• Trying to get at the same time the advantages of 1D horizontal and
vertical block-cyclic distributions

• Works whatever the progresses of the computations are
Left-to-right, top-to-bottom, wave, …

Consider the number of processes p = r * c
- Arranged like a r * c matrix

Consider a 2D matrix of size NxN
Consider a block size b (that divides N)

2017-2018F. Desprez - UE Parallel alg. and prog. - 91

2-D block-cyclic distribution

b

b

N

P0 P1 P2

P5P4P3

2017-2018F. Desprez - UE Parallel alg. and prog. - 92

2-D block-cyclic distribution, contd.

P2

P5

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

2017-2018F. Desprez - UE Parallel alg. and prog. - 93

2-D block-cyclic distribution, contd. P0 P1 P2

P5P4P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

b

b

N
P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1P1P0

Slight disequilibrium
• Can be neglected with

a large number of
blocks

Indexed computations have
to be implemented in other
functions
+ functions that give the
neighbors from a given
position in the grid

2017-2018F. Desprez - UE Parallel alg. and prog. - 94

