
F. Desprez - UE Parallel alg. and prog. 2017-2018 - 1

Collective
Communications



Some references

• Parallel Algorithms, H. Casanova, A. Legrand, Y. Robert

• Parallel Programming – For Multicore and Cluster System, T. Rauber, 

G. Rünger

2017-2018F. Desprez - UE Parallel alg. and prog. - 2



MIMD: Multiple Instructions stream, multiple data 
stream
Multi-Processor Machines
Each processor runs its own code asynchronously and independently
Two sub-classes

Shared memory                                  Distributed memory

A mix between SIMD and MIMD: SPMD (Single Program, Multiple Data)

2017-2018F. Desprez - UE Parallel alg. and prog. - 3



Collectives communications

• Interactions between parts of a parallel program mapped in a set of processors 
happen following well defined schemes between groups of processors/cores

• Not only point-to-point communications 
• To write parallel algorithms, we need collectives operations

- Broadcast, scatter, gather, all-to-all, ...
- Used in most parallel applications

• MPI provides many of them
- They should be designed to use efficiently hardware resources (processors, 
network, memory interfaces, bus, …)

• Optimizing these operations can
• Improve global performance of programs 
• Reduce the development cost of applications 
• Improve parallel software quality

• If possible, take the hardware architecture into account
• So why should we take a look at the way they are designed ?  

2017-2018F. Desprez - UE Parallel alg. and prog. - 4



Topologies

2017-2018F. Desprez - UE Parallel alg. and prog. - 5



Communication costs
Global communications are usually written using point-to-point communications 

Difficulty to find accurate models
- MPI implementations have different optimisations depending of the message 
sizes

- Smart optimizations taking into account special hardware/software features
Here we use a simplified model 

- Time = L + m/B (without contentions)
- L: startup (or latency) time 
- B: bandwidth (b = 1/B)
- m: message size

n Store-and-forward
n If we suppose that a message of length m is sent from de 

P0 to Pq, then the communication cost is
Tc(m) = q(L + m b)

2017-2018F. Desprez - UE Parallel alg. and prog. - 6



Suppositions about communications

Several options

- Send() and Recv() are both blocking
Called “rendez-vous” mode

- Recv() is blocking, but Send() is not
Pretty standard
MPI supports it

- Recv() and Send() are both non-blocking
Pretty standard too
MPI supports it as well

2017-2018F. Desprez - UE Parallel alg. and prog. - 7



Supposition about concurrency
An important question: can the processor perform several operations at 
the same time?
Generally we suppose that the processor is able to send, receive, and 
compute at the same time

- MPI_IRecv()
- MPI_ISend()
- Compute something

We need these three operations to be independent 
- We can not send the result of a computation before it is computed 
- We can not send what we receive (forwarding) unless we pipeline the 
communication

When we write parallel algorithms (in pseudo-code), we write concurrent 
activities with the || sign

2017-2018F. Desprez - UE Parallel alg. and prog. - 8



Virtual topology versus physical topology

• We have chosen that our virtual topology is a ring 
• We suppose that the topology is a ring too

• Maybe an other virtual topology is more adapted to the physical one we
have for our cluster

• The ring of processes allows to have simple algorithms
• With quite good performances

• Good candidate for our first approach of parallel algorithmics

2017-2018F. Desprez - UE Parallel alg. and prog. - 9



Some global operations

• One-to-all broadcast and reduction
• All-to-all broadcast and reduction
• All-Reduce operation and prefix sum
• Scatter and Gather
• Personnalized all-to-all communication
• Circular shift

2017-2018F. Desprez - UE Parallel alg. and prog. - 10



Broadcast (one-to-all communication)

• Input 
• Message M is stored on root processor

• Output
• Message M is stored locally on every processors  

2017-2018F. Desprez - UE Parallel alg. and prog. - 11



Reduction (all-to-one reduction)

• Input
• The p messages Mk for k = 0, 1, …, p-1
• Message Mk is stored locally on processor k
• An associative operation (+, x, max, min)

• Output
• The “sum” is stored on root processor

2017-2018F. Desprez - UE Parallel alg. and prog. - 12



All-to-all broadcast

• Input
• The p messages Mk for k = 0, 1, …, p-1
• Message Mk is stored locally processor k

• Output
• The p messages Mk for k = 0, 1, …, p-1 are stored locally on every
processors

2017-2018F. Desprez - UE Parallel alg. and prog. - 13



All-to-all reduction

2017-2018F. Desprez - UE Parallel alg. and prog. - 14

• Input
• The p2 messages Mr,k for r, k = 0, 1, …, p-1
• Message Mr,k is stored locally on processor r
• An associative operation (+, x, max, min)

• Output
• The “sum” is stored on the root processor 



Prefix sum

• Input
• The p messages Mk for k = 0, 1, …, p-1
• Message Mk is stored locally on processor k
• An associative operation (+, x, max, min)

• Output
• The “sum” is stored locally on processor k for all k

2017-2018F. Desprez - UE Parallel alg. and prog. - 15



Scatter

• Input
• The p messages Mk for k = 0, 1, …, p-1 are stored locally on root
processor

• Output
• Message Mk is stored locally processor k for all k

2017-2018F. Desprez - UE Parallel alg. and prog. - 16



Gather

• Input
• The p messages Mk for k = 0, 1, …, p-1 
• Message Mk is stored locally on processor k

• Output
• The p messages Mk are stored locally on root processor

2017-2018F. Desprez - UE Parallel alg. and prog. - 17



Scatter/Gather

2017-2018F. Desprez - UE Parallel alg. and prog. - 18



Personnalized All-to-all (transposition)

• Input
• The p2 messages Mr,k for r, k = 0, 1, …, p-1
• Message Mr,k is stored locally on processor r

• Output
• The p messages Mr,k are stored locally processor k for all k 

2017-2018F. Desprez - UE Parallel alg. and prog. - 19



Circular shift

• Input
• The p messages Mk for k = 0, 1, …, p-1 are stored locally on each
processor

• Output
• Message M(k-1)%p is stored locally on k for each k

2017-2018F. Desprez - UE Parallel alg. and prog. - 20

M0 M1 M2 M3 M3 M0 M1 M2



ALGORITHMS ON A RING OF 
PROCESSORS

2017-2018F. Desprez - UE Parallel alg. and prog. - 21



Ring of processors

Each process is identified by his rank
- MY_NUM()

We have a way of finding the total number of processes
- NUM_PROCS()

Each process can send message to each successor
- SEND(addr, L)

And receive a message to its predecessor
- RECV(addr, L)

P0

P1

P2

P3

Pp-1

2017-2018F. Desprez - UE Parallel alg. and prog. - 22



Broadcast

We want to write a program in which Pk sends the same message of length
m to all other processors

-Broadcast (k, addr, m)

On a ring, the naive algorithm consists in sending message to the neighbor
processor and so on an so forth, with no parallel communication 

It should not be written like this if the physical topology is not a ring 
- MPI uses some kind of tree

2017-2018F. Desprez - UE Parallel alg. and prog. - 23



Broadcast
Broadcast(k,addr,m)

q = MY_NUM()

p = NUM_PROCS()

if (q == k) 

SEND(addr,m)

else

if (q == k-1 mod p) 

RECV(addr,m)

else

RECV(addr,m)

SEND(addr,m)

endif

endif

n Assumes a blocking receive
n Send can be non-blocking

n The broadcast time is the following
(p-1)(L+m b)

2017-2018F. Desprez - UE Parallel alg. and prog. - 24



Optimized broadcast
n How to improve performance?
n We can split the message in smaller packets

n r packets where m can be divided by r 
n The root process sends r messages

n The model of the broadcast can be computed like this
n Consider the last process to obtain the last packet of the message 
n We need p-1 steps for the first packet to reach its destination, thus  

(p-1)(L +  m b / r)
n The the next r-1 packets arrive one after an other 

(r-1)(L + m b / r)
n Thus a total of 

(p + r - 2) (L + mb / r)

2017-2018F. Desprez - UE Parallel alg. and prog. - 25



Optimized broadcast, contd.
The next question is, what is the value r that that minimizes 

(p + r- 2) (M + m b / r) ?

n We can see the previous expression as 
(c+ar)(d+b/r), with four constant values a, b, c, d

n The non-constant part of the expression is thus 
ad.r + cb/r, that should be minimized

n This value is minimized for
sqrt(cb / ad)

thus we have
ropt = sqrt(m(p-2)b / L)

With the optimal time 
(sqrt((p-2)L) + sqrt(mb))2

that tends towards mb when m is large (independent of p !)

2017-2018F. Desprez - UE Parallel alg. and prog. - 26



Classical network principle

We have seen that if we cut a (large) message into a large number of (small) 
messages, then we can send the message through several jumps (in our
case p-1) virtually as fast as sending it to just one jump

This is the fundamental principle of IP networks
• Messages are divided into several IP frames
• They are sent on several routers
• But the execution time is limited by the slowest router time

2017-2018F. Desprez - UE Parallel alg. and prog. - 27



Other solution: Recursive Doubling

Double the number of active processes at each step

2017-2018F. Desprez - UE Parallel alg. and prog. - 28



Scatter
• Process k sends a different message to all other processes 

(including it)
- Pk stores messages for Pq at address addr[q], including a 
message to addr[k]

• At the end of the execution, each processor has the message it 
received in msg

• The principle of the algorithm is just pipelining the communications 
starting with the message intended for Pk-1, the most distant 
process 

2017-2018F. Desprez - UE Parallel alg. and prog. - 29



Scatter

Scatter(k,msg,addr,m)

q = MY_NUM()

p = NUM_PROCS()

if (q == k)

for i = 0 to p-2

SEND(addr[k+p-1-i mod p],m)

msg ¬ addr[k]

else

RECV(tempR,L)

for i = 1 to k-1-q mod p

tempS « tempR

SEND(tempS,m) || RECV(tempR,m)

msg ¬ tempR

Exchange of Send Buffer and 
Receive Buffer (Pointer)

Send and receive in 
parallel, with a non-
blocking send

Same execution time than broadcast
(p-1)(L + m b)

2017-2018F. Desprez - UE Parallel alg. and prog. - 30



Scatter

Scatter(k,msg,addr,m)

q = MY_NUM()

p = NUM_PROCS()

if (q == k)

for i = 0 to p-2

SEND(addr[k+p-1-i mod p],m)

msg ¬ addr[k]

else

RECV(tempR,L)

for i = 1 to k-1-q mod p

tempS « tempR

SEND(tempS,m) || RECV(tempR,m)

msg ¬ tempR

k = 2, p = 4

Proc q=2
send addr[2+4-1-0 % 4 = 1]
send addr[2+4-1-1 % 4 = 0]
send addr[2+4-1-2 % 4 = 3]
msg = addr[2]

Proc q=3
recv (addr[1])
// loop 2-1-3 % 4 = 2 times
send (addr[1]) || recv (addr[0])
send (addr[0]) || recv (addr[3])

msg = addr[3]

Proc q=0
recv (addr[1])
// loop 2-1-2 % 4 = 1 time
send (addr[1]) || recv (addr[0])

msg = addr[0]

Proc q=1
// loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]

0 1

2
3

2017-2018F. Desprez - UE Parallel alg. and prog. - 31



All-to-all

All2All(my_addr, addr, m)

q = MY_NUM()

p = NUM_PROCS()

addr[q] ¬ my_addr

for i = 1 to p-1

SEND(addr[q-i+1 mod p],m) || RECV(addr[q-i mod p],m)

Same execution time than 
scatter

(p-1)(L + m b)

0

1

2 2

1

0

2017-2018F. Desprez - UE Parallel alg. and prog. - 32



ALGORITHMS ON 
HYPERCUBE

2017-2018F. Desprez - UE Parallel alg. and prog. - 33



Reminder on hypercubes

• d dimensional graph
• 2d nodes with d neighbor each
• A 0-cube is a simple node simple, a 1-cube a row of processors, a 2-
cube a mesh, etc
• Log(p) dimensions if p processors
• Diameter d

2017-2018F. Desprez - UE Parallel alg. and prog. - 34



Broadcast in hypercubes

Same algorithm as the ring one but generalized to d dimensions

If the root process is not 0
rename processes me = me XOR root

2017-2018F. Desprez - UE Parallel alg. and prog. - 35



Broadcast cost

• Number of steps: d = log2 (p)
• Cost per step: L + m/B
• Total cost: (L + m/B) log2 (p)

The broadcast cost with p2 processors is only the double of the broadcast 
cost with p processors (log2 (p2)= 2 log2 (p))

2017-2018F. Desprez - UE Parallel alg. and prog. - 36



Broadcast in a binary tree

2017-2018F. Desprez - UE Parallel alg. and prog. - 37



Reduction (all-to-one)

• Same algorithm as broadcast but reversing the communication order and 
directions
• Same execution time (adding the reduction cost)
• Combining the incoming message with the local data with the operation

2017-2018F. Desprez - UE Parallel alg. and prog. - 38



All-to-all broadcast in a hypercube
Using the ring algorithm

• For each dimension d of the hypercube, apply in sequence the algorithm on a 
ring on the 2d-1 links of the current dimension in parallel

2017-2018F. Desprez - UE Parallel alg. and prog. - 39



All-to-all broadcast in a hypercube

• Cost
• Number of steps: 

• Cost for step k = 0, 1, …, d-1: 

• Total cost: 

2017-2018F. Desprez - UE Parallel alg. and prog. - 40



ALGORITHMS ON A GRID 
OF PROCESSORS

2017-2018F. Desprez - UE Parallel alg. and prog. - 41



Bi-dimensional grid of processors

Let p = q2 processors

They can be seen as being arranged in the form of a square grid
- One can also have a rectangular grid 

Each processor is identified by two indexes
- i: its row
- j: its column

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

2017-2018F. Desprez - UE Parallel alg. and prog. - 42



Bi-dimensional torus (2D torus)

We have links which connect each side of the grid

Each processor belongs to two different rings 
- Possibility to use algorithms designed for ring topologies

Mono-directional or bi-directional links
- Depends on what we need for our
algorithm and/or physical resources

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

2017-2018F. Desprez - UE Parallel alg. and prog. - 43



Overlaps

In our performance analyzes, it is often assumed that a processor can 
perform three activities in parallel

- Computation
- Send
- Receive

It is also necessary to know whether the links are bi-directional or not
• Two models

- Half-duplex: two messages on the same link going in opposite 
directions share the link bandwidth

- Full-duplex: it's like having two links between each processor

• To be checked (and to measure and verify sometimes) with the target 
platform

2017-2018F. Desprez - UE Parallel alg. and prog. - 44



Multiple concurrent communications?
• We now have four (logical) links on each processor
• You need to know how many concurrent calls can be made at the 
same time

• There can be 4 sends and 4 receives in the model with bi-
directional links

• Assuming that the 4 sends and the 4 receives can take place in 
parallel, one has a multi-port model

• If we assume 1 send and 1 receive in parallel, we have a 1-port 
model

• Other possible variations
• k-port (bounded multi-port), inputs/outputs

2017-2018F. Desprez - UE Parallel alg. and prog. - 45



Next

We have several options
- Grid or torus
- Mono- ou bi-directional links
- 1-port or multi-port (or k-port)
- Half- or full-duplex

• We will generally assume a bi-directional and full-duplex torus
• We will examine the 1-port and multi-port assumptions

"Easy" to modify a performance analysis to stick with the physical resources
of the target machines studied

2017-2018F. Desprez - UE Parallel alg. and prog. - 46



Is the grid topology realistic?

Some parallel machines are(were) built with physical networks in the form of 
grids (2D or 3D)

- Examples: Intel Paragon, IBM’s Blue Gene/L

If the platform uses a switch with all-to-all communications, then the grid is
assumed to be valid

• On the other hand, the assumptions of full-duplex or multi-port are not 
necessarily valid

We will see that even if the physical platform is a unique shared medium 
(such as a non-switched Ethernet network), it is sometimes better to think of 
it as a grid when developing algorithms!

2017-2018F. Desprez - UE Parallel alg. and prog. - 47



Communications in a grid
• A process can call two functions to know its position in the grid: 

My_Proc_Row() and My_Proc_Col()

• A process can know how many total processes are in the topology with: 
Num_Procs()

- Assume that we have a square grid

• There are two point-to-point communications functions:
Send(dest, addr, L)

Recv(src, addr, L)

• Broadcast functions can be created in rows and columns
BroadcastRow(i, j, srcaddr, dstaddr, L) 

BroadcastCol(i, j, srcaddr, dstaddr, L)

• It is assumed that a call to such a function in a row or column that is not right returns
immediately

2017-2018F. Desprez - UE Parallel alg. and prog. - 48



Row and column broadcast
If we have a torus

- If one has mono-directional links, one can re-use the broadcast 
function developed for the rings of processors

- Pipelined or not
- If you have bi-directional links and a multi-port model, you can improve
performance by sending data on both sides of the ring

- Asymptotic performances are not changed

If you have a grid
- If the links are bi-directional, then we can send the messages on both
sides from the source processor concurrently or not, depending on 
whether we have a 1-port or multi-port model

- If the links are mono-directional, one can simply not implement the 
broadcast

2017-2018F. Desprez - UE Parallel alg. and prog. - 49



Broadcast in a grid
• Use the ring broadcast algorithm on the row where the root is located
• Use the ring broadcast algorithm on all columns in //

2017-2018F. Desprez - UE Parallel alg. and prog. - 50



All-to-all in a grid of processors
• Use the ring broadcast algorithm on each row in // 

• Cost (we suppose that we have a                   grid of processors)
• Number of steps: 

• Time per step: 

• Total time:

• Use the ring broadcast algorithm on each column in // 
• Cost

• Number of steps:

• Time per step:

• Total time:

• Total time: 

2017-2018F. Desprez - UE Parallel alg. and prog. - 51



Bi-dimensional matrix distribution

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

C00 C01 C02 C03
C10 C11 C12 C13
C20 C21 C22 C23
C30 C31 C32 C33

B00 B01 B02 B03
B10 B11 B12 B13
B20 B21 B22 B23
B30 B31 B32 B33

n Let ai,j be a element of the 
matrix
n We denote by Ai,j (or Aij) the 
block of matrix A assigned to Pi,j

2017-2018F. Desprez - UE Parallel alg. and prog. - 52

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,3

P1,3

P2,3

P3,0 P3,1 P3,2 P3,3



Cannon matrix product algorithm

Old algorithm
- Designed for systolic architectures (SIMD)
- Adapted to a 2D grid

The algorithm starts with a redistribution of matrices A and B 
- Called “preskewing”

Then matrices are multiplied together

At the end, the matrices are re-distributed to find their initial distribution
- Called “postskewing”

2017-2018F. Desprez - UE Parallel alg. and prog. - 53



Cannon Preskewing

Matrix A 
Each block of matrix A is shifted to the left until the process of the first 
process column contains a block of the diagonal of the matrix

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

A00 A01 A02 A03
A11 A12 A13 A10
A22 A23 A20 A21
A33 A30 A31 A32

2017-2018F. Desprez - UE Parallel alg. and prog. - 54


