
Interconnection Networks

Frédéric Desprez

Inia F. Desprez - UE Parallel alg. and prog.

2017-2018 - 1

Some References

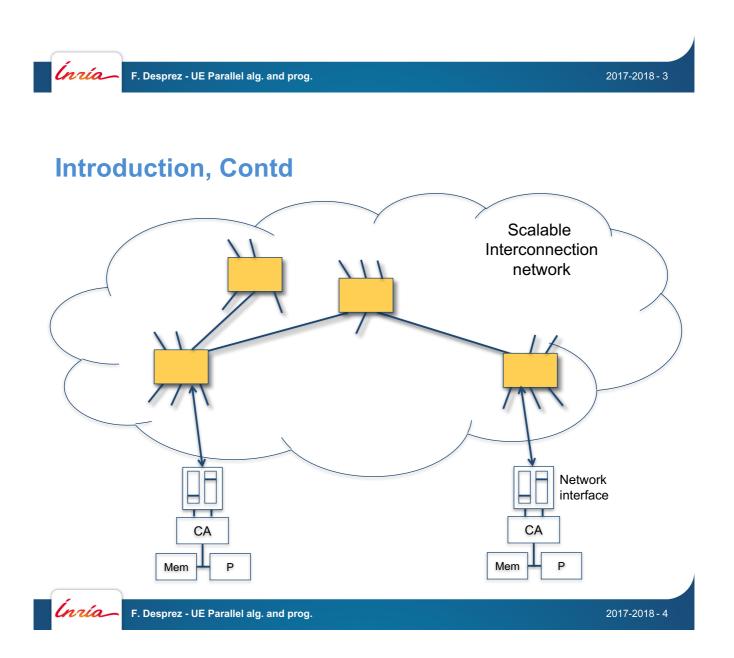
• Parallel Programming – For Multicore and Cluster System, T. Rauber, G. Rünger

• Lecture "Calcul hautes performance – architectures et modèles de programmation", Françoise Roch, Observatoire des Sciences de l'Univers de Grenoble Mesocentre CIMENT

• 4 visions about HPC - A chat, X. Vigouroux, Bull

• Parallel Computer Architecture – A Hardware/Software Approach, D.E. Culler and J.P. Singh

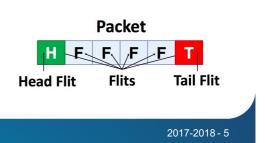
• Parallel Computer Architecture and Programming (CMU 15-418/618), Todd Mowry and Brian Railing


• Interconnection Network Architectures for High-Performance Computing, Cyriel Minkenberg, IBM

https://www.systems.ethz.ch/sites/default/files/file/Spring2013_Courses/AdvCompNetw_Spring2013/13-hpc.pdf

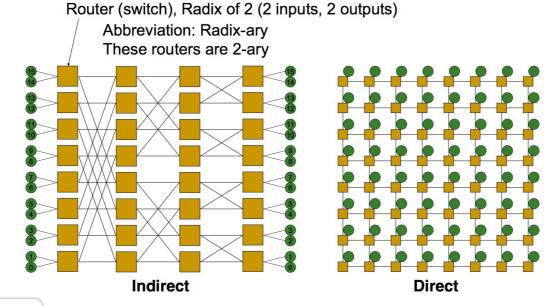
Introduction

- Communications = overhead !!
- How should computation units be connected ?
 - For shared memory platforms, connecting memories with processors
 - For distributed memory platforms, need of a scalable high-performance network
 - Thousands of nodes exchanging data
- Relation between the topology of the network and the performance of global communication patterns
- Mathematical characteristics of networks + network models (latency, bandwidth, network protocols)



Terminology

- Network interface
 - Connects endpoints (e.g. cores) to network
 - Decouples computation/communication
- Links
 - Bundle of wires that carries a signal
- Switch/router
 - · Connects fixed number of input channels to fixed number of output channels
- Channel
 - A single logical connection between routers/switches
- Node
 - A network endpoint connected to a router/switch
- Message
 - Unit of transfer for network clients (e.g. cores, memory)
- Packet
 - Unit of transfer for network
- Flit
 - Flow control digit
 - Unit of flow control within network


```
Ínría
```

F. Desprez - UE Parallel alg. and prog.

Terminology, Contd.

- Direct or indirect networks
 - Endpoints sit "inside" (direct) or "outside" (indirect) the network
 - E.g. mesh is direct; every node is both endpoint and switch

Formalism

- Graph G=(V,E)
 - V: switches and nodes
 - E: communication links
- **Route**: $(v_0, ..., v_k)$ path of length k between node 0 and node k, where $(v_i, v_{i+1}) \in E$
- Routing distance
- Diameter: maximum length between two nodes
- Average distance: average number of hops across all valid routes
- Degree: number of input (output) channels of a node
- **Bisection width:** Minimum number of parallel connections that must be removed to have two equal parts

F. Desprez - UE Parallel alg. and prog.

What Characterizes a Network?

Latency

Inría

- Time taken by a message to go from one node to another
 - A memory load that misses the cache has a latency of 200 cycles
 - A packet takes 20 ms to be sent from my computer to Google

Bandwidth (available bandwidth)

- The rate at which operations are performed
- *b* = *wf*
 - Where w is the width (in bytes) and f is the send frequency: f = 1 / t (in Hz)

Throughput (delivered bandwidth)

- How much bandwidth offered can be truly used
 - Memory can provide data to the processor at 25 GB/sec
 - A communication link can send 10 million messages per second

2017-2018 - 7

What Characterizes a Network? Contd.

Topology

- Physical network interconnection structure
- · Specifies way switches are wired
- Affects routing, reliability, throughput, latency, building ease

Routing Algorithm

- · How does a message get from source to destination
- · Restricts all paths that messages can follow
- Many algorithms with different properties (static or adaptive)

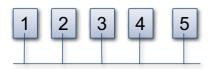
Switching strategy

- How a message crosses a path
- · Circuit switching vs. Packet switching

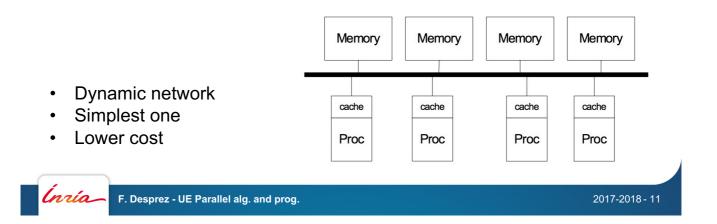
Flow control mechanism

• When a message (or piece of message) crosses a path, what happens when there is traffic? What do we store within the network?

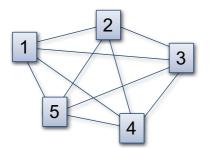
nría


F. Desprez - UE Parallel alg. and prog.

2017-2018 - 9

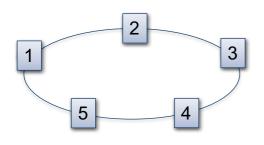

Goals

- · Latency must be as small as possible
- High throughput
- · As many concurrent transfers as possible
 - The bisection width gives the potential number of parallel connections
- · Lowest possible cost/energy consumption


Bus (e.g. Ethernet)

- Degree = 1
- Diameter = 1
- No routing
- Bisection width = 1
 - CSMA/CD protocol
 - Limited bus length

Fully Connected Network

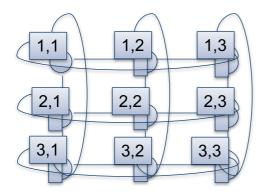

- Degree = n-1
 - too costly for large networks
- Diameter = 1
- Bisection width = $\lfloor n/2 \rfloor \lceil n/2 \rceil$

When the network is cut in two parts, each node has a connection to n / 2 other nodes. There are n / 2 nodes like that.

- Static network
- Connection between every pair of nodes

Ring

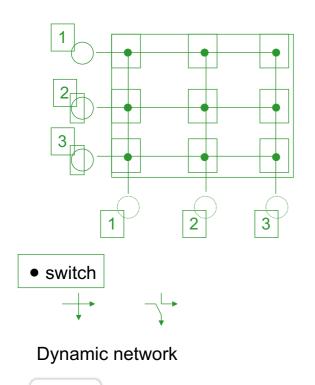
- Degree = 2
- Diameter = [n/2]
 slow for big networks
- Bisection width = 2


Static network

A node i is connected to nodes i+1 and i-1 modulo n.

Examples: FDDI, SCI, FiberChannel Arbitrated Loop, KSR1, IBM Cell

d-Dimensional Torus

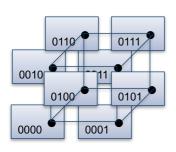


- For d dimensions
- Degree = d
- Diameter = d ($d\sqrt{n} 1$)
- Bisection width = $(d\sqrt{n}) d-1$

Static network

Crossbar

- Fast and costly (n² switches)
- Processor x memory
- Degree = 1
- Diameter = 2
- Bisection width = n/2
 - Ex: 4x4, 8x8, 16x16



F. Desprez - UE Parallel alg. and prog.

2017-2018 - 15

Hypercube

0010	0011
0000	0001

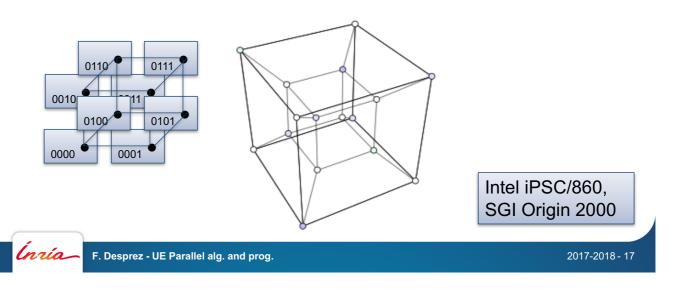
Static network

• Hamming distance =

- Number of bits that differ in the representation of two numbers
- Two nodes are connected if their Hamming distance is 1
- Routing from x to y reduces the Hamming distance

Hypercube, Contd

0010


0000

0011

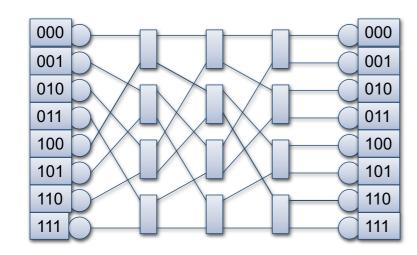
0001

k dimensions, n= 2^k nodes

- Degree = k
- Diameter = k
- Bisection width = n/2
 - Two (k-1)-hypercubes are connected through n/2 links to produce a k-hypercube

Omega Network

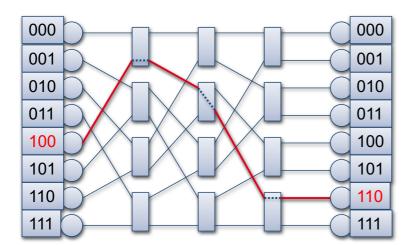
Basic block: 2x2 Shuffle


Perfect Shuffle

000	bC	000
001		001
010		010
011		011
100	$b/\sqrt{0}$	100
101	$D' \rightarrow 0$	101
110		110
111	b - 0	111

Omega Network, Contd.

Log₂n levels of 2x2 shuffle blocks Dynamic network


Level i looks for bit i If 1 then go down If 0 then go up

F. Desprez - UE Parallel alg. and prog.

2017-2018 - 19

Omega Network, Contd.

Log₂n levels of 2x2 shuffle blocks Dynamic network

Level i looks for bit i If 1 then go down If 0 then go up

Example 100 sends to 110

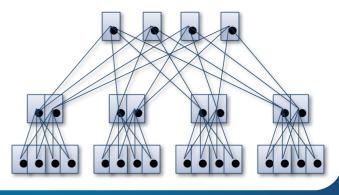
Inría

Omega Network, Contd.

- n nodes
- (n/2) log₂n blocks
- Degree = 2 for the nodes, 4 for the blocks
- Diameter = $\log_2 n$
- Bisection width = n/2
 - For a random permutation, n / 2 messages are supposed to cross the network in parallel
 - Extreme cases
 - If all the nodes want to go to 0, a single message in parallel
 - · If each node sends a message, n parallel messages

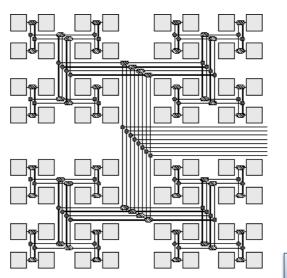
F. Desprez - UE Parallel alg. and prog.

Fat Tree /Clos Network


- Nodes = tree leaves
- The tree has a diameter of $2\log_2 n$
- A simple tree has a bisection width = 1
 - bottleneck

Fat Tree

- Links at level i have twice the capacity that those at level i-1
- At level i of the switches with 2ⁱ inputs and 2ⁱ outputs
- Also known as the Clos network


2017-2018 - 21

Fat Tree /Clos Network, Contd.

- Routing
 - Direct path to the lowest common parent
 - When there is an alternative one chooses at random
 - Fault-tolerant to nodes faults
- Diameter: 2log₂n,
- Bisection width: n

Ínría

F. Desprez - UE Parallel alg. and prog.

2017-2018 - 23

CM-5

Summary

Network G with n nodes	Degree g(G)	Diameter $\delta(G)$	Edge connectivity	Bisection bandwidth
Complete Graph	<u>n – 1</u>	1	<u>n – 1</u>	$(\frac{n}{2})^2$
Linear Array	2	<u>n</u> – 1	1	1
Ring	2		2	2
<i>d</i> -dimensional mesh $n = r^d$	2d	d(∜n − 1)	d	n ^{<u>d-1</u> d}
d-dimensional torus $n = r^d$	2d	$d\lfloor \frac{\sqrt[d]{n}}{2} \rfloor$	2d	$2n^{\frac{d-1}{d}}$
<i>k</i> -dimensional hypercube $(n = 2^k)$	log n	log n	log n	<u>n</u> 2
<i>k</i> -dimensional CCC network ($n = k2^k$ for $k \ge 3$)	3	$2k-1+\lfloor \frac{k}{2} \rfloor$	3	$\frac{n}{2k}$
Complete binary tree $(n = 2^k - 1)$	3	$2\log \frac{n+1}{2}$	1	1
k-ary d-Cube $(n = k^d)$	2d	$d\lfloor \frac{k}{2} \rfloor$	2d	$2k^{d-1}$