
Extending the Scope of OpenMP with Task Parallelism

• Whatif my application was not written in a loop-based fashion?

• The OpenMP tasking concept
• tasks generated by one OpenMP thread

can be executed by any of the threads of the

parallel region

2017-2018F. Desprez - UE Parallel alg. and prog. - 48

Tasking in OpenMP: Basic Concept

2017-2018F. Desprez - UE Parallel alg. and prog. - 49

• The application programmer specifies

regions of code to be executed in a task

with the #pragma omp task construct

• All tasks can be executed

independently

• When any thread encounters a task

construct, a task is generated

• Tasks are executed asynchronously by

any thread of the parallel region

• Completion of the tasks can be

guaranteed using the taskwait

synchronization construct

Tasking in OpenMP: Execution Model

2017-2018F. Desprez - UE Parallel alg. and prog. - 50

First OpenMP Tasking Experience

2017-2018F. Desprez - UE Parallel alg. and prog. - 51

First OpenMP Tasking Experience, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 52

First OpenMP Tasking Experience, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 53

First OpenMP Tasking Experience, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 54

First OpenMP Tasking Experience, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 55

What About Tasks with Dependencies on Other Tasks?

• Here, task A is writing some

data that will be processed by

task C. The same goes for task

B and task D.

• The taskwait construct here

makes sure task C won’t

execute before task A and task

D before task B.

• As a side effect, task C won’t

execute until the execution of

task B is over, creating some

kind of fake dependency
between task B and C.

2017-2018F. Desprez - UE Parallel alg. and prog. - 56

OpenMP Tasks Dependencies: Rationale

• The depend clause allows you to provide information on the way a task

will access data.

• It is followed by an access mode that can be in, out or inout.
• Here are some examples of use for the depend clause:

• depend(in: x, y, z): the task will read variables x, y and z
• depend(out: res): the task will write variable res, any previous value of

res will be ignored and overwritten

• depend(inout: k, buffer[0:n]): the task will both read and write

variable k and the content of n elements of buffer starting from index 0

• The OpenMP runtime system dynamically decides whether a task is

ready for execution or not considering its dependencies (there is no need

for further user intervention here)

2017-2018F. Desprez - UE Parallel alg. and prog. - 57

OpenMP Tasks Dependencies : Some Trivial Example

• Here is the previous example

program written with tasks

dependencies

• The taskwait construct is gone

• The runtime system will rely on

data dependencies to choose a

ready task to execute

• In this version, task C could be

executed before task B, as long as

the execution of task A is over

• Expressing dependencies

sometimes helps unlocking more

parallelism

2017-2018F. Desprez - UE Parallel alg. and prog. - 58

Speeding up OpenMP applications

• Preambule: Have a closer look at your favorite/target platform

• Improving the execution of a parallel application requires a good
understanding of the target platform architecture

• In particular, knowing about the following items is always useful:

• The multicore processor: how many cores are available?

• Which of them are physical/logical cores (HyperThreading and

friends)?

• The memory hierarchy: what kind of memory is available?

• How is it organized?

• The architecture topology: how (multicore) processors are connected

together and how do they access memory?

2017-2018F. Desprez - UE Parallel alg. and prog. - 59

Getting to Know Your Platform with hwloc

• Provides information about

• the processing units (logical/physical

cores)

• the cache hierarchy

• the memory hierarchy (NUMA nodes)

• However, hwloc does not provide
the entire architecture topology (the

way processors are connected

together).

2017-2018F. Desprez - UE Parallel alg. and prog. - 60

The hwloc library gathers valuable information about your platform and synthesize
it into a generic representation.

https://www.open-mpi.org/projects/hwloc/

Understanding the Architecture Topology

• The operating system knows about the way processors are connected

together to some extent. It can provide a distance table that roughly

represent how many crossbars you need to cross to access a specific

NUMA node (see the hwloc-distances program)

2017-2018F. Desprez - UE Parallel alg. and prog. - 61

A 4-nodes NUMA machine with
the corresponding NUMA
distance table

Cache Memory: Basic Concept
• A cache can be seen as a table of cache lines holding a predefined

amount of memory (64B on most processors)

• Accessing a variable results in a cache hit if the corresponding cache

line has already been cached (fast memory access)

• It can also result in a cache miss if the corresponding cache line is not

cached yet. The hardware has to load the cache line to the cache before

the processor can access it (longer memory access).

2017-2018F. Desprez - UE Parallel alg. and prog. - 62

Performance: False Sharing effect

Cache coherency and the negative effect of false sharing can have a big

impact on performance

Shared
Memory

Caches

Cores

Cache line

Charging a line of a shared cache invalids the other copies of this

line

2017-2018 - 63F. Desprez - UE Parallel alg. and prog.

Performance: False Sharing effect, contd.

Using data structures in memory may lead to a decrease of
performance and a lack of scalability

- To get performance, use the cache

- If several cores manipulate different data items close in memory, the

update of individual elements leads a load of a line of cache (to keep

coherency with the main memory)

False sharing leads to bad performance when the following conditions
are met

- Shared data a modified on different cores

- Several threads on different cores update data which are located on the

same cache line

- These updates appear simultaneously and frequently

2017-2018 - 64F. Desprez - UE Parallel alg. and prog.

Performance: False Sharing effect, contd.

When data are only read, we don’t get false sharing

It can be avoided (or reduced) by
- Privatizing variables

- Increasing the array size or by using “padding”

- By increasing the packet size (modifying the way loop iterations are

shared between threads)

2017-2018 - 65F. Desprez - UE Parallel alg. and prog.

Performance: False Sharing effect, contd.

Integer, dimension(n) :: a

…

!$OMP PARALLEL DO SHARED(nthreads,a) SCHEDULE(static,1)

DO i=0, nthreads-1

a(i) = i

END DO

!$OMP END PARALLEL DO

Nthreads : # threads executing the loop
If we suppose that every thread possess a copy of a in his local cache
Packet size of 1 leads to a false sharing phenomenon for each update

If a cache line can contain C elements of vector a, we can sole the problem by
extending artificially the array dimensions (array padding)
We declare an array a(C,n) and remplace a(i) by a(1,i)

2017-2018 - 66F. Desprez - UE Parallel alg. and prog.

Naive Square Matrix Multiplication Algorithm

2017-2018F. Desprez - UE Parallel alg. and prog. - 67

Speeding-Up OpenMP: Benefit from Cache Memory (2)

2017-2018F. Desprez - UE Parallel alg. and prog. - 68

On the Intel192 machine

Serial time : 40.3018250s
Parallel time : 0.270773s

Achieved speed-up: 148

We Can Do Better : It’s All About Being (Cache) Friendly

Assuming we work with 32 bytes-long cache lines and each element of the

matrix is 8 bytes long, how many cache lines do I need to compute one

element of C?

2017-2018F. Desprez - UE Parallel alg. and prog. - 69

We Can Do Better : It’s All About Being (Cache) Friendly

2017-2018F. Desprez - UE Parallel alg. and prog. - 70

Assuming we work with 32 bytes-long cache lines and each element of the

matrix is 8 bytes long, how many cache lines do I need to compute one

element of C?

We Can Do Better : It’s All About Being (Cache) Friendly

2017-2018F. Desprez - UE Parallel alg. and prog. - 71

Assuming we work with 32 bytes-long cache lines and each element of the

matrix is 8 bytes long, how many cache lines do I need to compute one

element of C?

We Can Do Better : It’s All About Being (Cache) Friendly

2017-2018F. Desprez - UE Parallel alg. and prog. - 72

Assuming we work with 32 bytes-long cache lines and each element of the

matrix is 8 bytes long, how many cache lines do I need to compute one

element of C?

We Can Do Better : It’s All About Being (Cache) Friendly

2017-2018F. Desprez - UE Parallel alg. and prog. - 73

Assuming we work with 32 bytes-long cache lines and each element of the

matrix is 8 bytes long, how many cache lines do I need to compute one

element of C?

Conclusion:
• Every access to Ai use the same

cache line => cache friendly
• Every access to Bj use a different

cache line => poor cache
utilization

Deal with the Bj Situation

To improve cache utilization, we can transpose matrix B to make sure B0, B4,

B8 and B12 are stored on the same cache line

2017-2018F. Desprez - UE Parallel alg. and prog. - 74

Control Data Placement on NUMA Systems

• Software support to deal

with data locality

• The First-Touch allocation

policy (default behavior of

most memory allocators)

• Some external libraries like

libNUMA or hwloc

2017-2018F. Desprez - UE Parallel alg. and prog. - 75

Non-Uniform Memory Accesses (NUMA)

Allocating Memory on First Touch

• On most UNIX-like operating systems, when allocating some memory

using malloc and friends, the corresponding memory pages are physically

allocated:

• when they are accessed for the first time (lazy allocation)

• next to the thread that performs this first access

• In other words, it’s crucial to make sure a data is first touched by the
thread that will access it during the computation phase

2017-2018F. Desprez - UE Parallel alg. and prog. - 76

STREAM Benchmark

• STREAM is a memory

benchmark written in C +

OpenMP performing simple

operations on vectors

• It was designed to evaluate
the aggregated memory
bandwidth of a shared

memory platform

• Vectors are large enough not

to fit into cache memory.

2017-2018F. Desprez - UE Parallel alg. and prog. - 77

How to initialize vectors a, b and c to make sure the corresponding memory pages
will be accessed locally when executing STREAM Triad?

STREAM: Initializing Data the Right Way

• Here, we perform a parallel initialization

of the data being accessed by STREAM

Triad

• The OpenMP specification guarantees

that the same iterations will be executed

by the same threads as long as both

parallel loops:

• involve the same number of threads

and iterations

• involve the static loop scheduler with

the same parameters (chunk size)

We then only need to make sure a thread
will be assigned to the same core in both
regions

2017-2018F. Desprez - UE Parallel alg. and prog. - 78

Thread Affinity in OpenMP

The proper way to bind OpenMP threads is as follows:
1. The programmer first defines a list of places on which the threads will

be pinned.

• A place can be seen as a set of processing units (hardware threads most of

the time)

• It can be explicit, refering to the processing unit OS numbering:

OMP PLACES="0,1,2,3"
• Or you can use one of the predefined abstractions (threads, cores,

sockets): OMP PLACES=cores to refer to physical cores

2. The programmer then specifies the way threads will be distributed

over the list of places

- Ex: OMP PROC BIND = close to perform a compact distribution

over the places list (default behavior)

2017-2018F. Desprez - UE Parallel alg. and prog. - 79

STREAM: Evaluation

• We ran the STREAM benchmark 20 times on Intel192 and experimented

with different strategies for thread and data placement:

• serial init: STREAM vectors are initialized sequentially and no thread

binding is applied

• serial init + binding: same, except we bind the threads using OMP

PLACES=cores

• randomized memory + binding: we allocate the memory pages in a

round robin fashion over the NUMA nodes using the hwloc-bind --

mempolicy interleave tool

• parallel init + binding: we initialize the vectors in parallel and we make

sure they don’t move between initialization and computation phase

2017-2018F. Desprez - UE Parallel alg. and prog. - 80

serial init

2017-2018F. Desprez - UE Parallel alg. and prog. - 81

serial init + binding

2017-2018F. Desprez - UE Parallel alg. and prog. - 82

randomized memory + binding

2017-2018F. Desprez - UE Parallel alg. and prog. - 83

parallel init + binding

2017-2018F. Desprez - UE Parallel alg. and prog. - 84

Some Raw Performance of OpenMP Implementations

The OpenMP runtime system is

responsible for the low-level

implementation of the OpenMP

constructs, like managing the threads

or executing the tasks for example

2017-2018F. Desprez - UE Parallel alg. and prog. - 85

Remember that nothing comes for free and it’s up to you to keep these overheads
under control

A Task-Based Cholesky Decomposition

The algorithm works on tiles (also called blocks) and involves the
following BLAS kernels

• potrf: Cholesky decomposition

• trsm: Solving triangular matrix with multiple right hand sides

• syrk: Symmetric rank-k update to a matrix

• gemm: Matrix matrix multiplication

Cholesky workflow on a 4x4 tiled matrix
1. execute potrf on tile (1,1). This unlocks

some trsm tasks to be executed ;

2. each trsm unlocks one syrk and

some gemm tasks

3. repeat these steps on the lower

3x3 matrix starting with tile (2,2)

2017-2018F. Desprez - UE Parallel alg. and prog. - 86

Cholesky Implementation using OpenMP 4.0 Dependent Tasks

• NB is the number

tiles of the matrix

• A is a matrix of

pointers

• Each element of A

points to a different

tile of the matrix

2017-2018F. Desprez - UE Parallel alg. and prog. - 87

Cholesky Performance Depending on the Block Size

2017-2018F. Desprez - UE Parallel alg. and prog. - 88

OpenMP

• It provides some high-level constructs to
• run loops in parallel (OpenMP 2.5)

• express task-based parallelism (OpenMP 3.0)

• express task dependencies (OpenMP 4.0)

• offload computations on accelerators (OpenMP 4+)

• Getting parallel applications up to speed still require a good
understanding of both software and hardware layers, in order to

• make your code cache-friendly, when possible

• control data placement to avoid NUMA-related penalties

• keep the runtime-related overheads at bay

2017-2018F. Desprez - UE Parallel alg. and prog. - 89

OpenMP

• Requires a shared memory multi-processor

• Relatively easy implementation, even in a sequential program

• Allows the progressive parallelization of a sequential program

• The potential for parallel performance lies in parallel regions

• Within these parallel regions, work can be shared through loops and

parallel sections

• But it is also possible to singularise a task for a particular job

• Explicit global or point-to-point synchronizations are sometimes required

in parallel regions

• Particular care must be taken in defining the status of variables used in a

construction

• Task parallelism for irregular computations

2017-2018F. Desprez - UE Parallel alg. and prog. - 90

OpenMP versus MPI
• OpenMP uses memory common to all processes

• All communication is done by reading and writing in this memory (and

using synchronization mechanisms)

• MPI is a library of routines allowing the communication between

different processes (located on different machines or not), the

communications are made by explicit sends or receives of messages

• For the programmer:

• rewrite the code with MPI,

• simple addition of directives in the sequential code with OpenMP

• Possibility of mixing the two approaches in the case of cluster of

machines with multi-core nodes (hybrid programming)

• Choice strongly dependent: the machine, the code, the time that the

developer wants to dedicate and the expected gain

• Superior scalability with MPI

2017-2018 - 91F. Desprez - UE Parallel alg. and prog.

L3 Cache

L1

L2

L1

L2

L1

L2

L1

L2

Memory

bank

Memory

bank

Interconnect

L3 Cache

L1

L2

L1

L2

L1

L2

L1

L2

