Shared Memory
Machines and

OpenMP :
Programming [E&EE

L3 Cache

Frédéric Desprez Interconnect

INRIA L3 Cache
Memory
.

h'zéz,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 1

Some references

OpenMP web site
http://www.openmp.org
http://www.openmp.org/specifications/
OpenMP lecture, Frangois Broquedis (Corse), CERMACS School 2016

* http://smai.emath.fr/cemracs/cemracs16/programme.php

OpenMP lecture, Frangoise Roch (Grenoble)
IDRIS lecture and lab work

http://www.idris.fr/formations/openmp/

Using OpenMP , Portable Shared Memory Model, Barbara Chapman

Parallel Programming in C with MPI and OpenMP, M.J. Quinn

Programming Models for Parallel Computing, P. Balaji

Parallel Programming — For Multicore and Cluster System, T. Rauber, G.

Ringer

. h'u’a,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 2

Introduction

Parallel applications

P VBV VN VN B A B VD B N B D) VBN O B B D B S B A IO S O A r
| Abstractl_ons to Abstractl_ons to | Programming
describe describe
| . e 1 model
| parallel computations communications I
Langage or API

Primitives/mechanisms

Compiler and/or runtime system

System calls API

Hardware architecture
(hardware/software frontier)

Concepts System abstraction System implementation

I hu’a,— F. Desprez - UE Parallel alg. and prog. 2017-2018- 3

Introduction

Programming model: how to write (and describe) a parallel program

We will learn MPI (Message Passing Interface)
* The programmer manages everything (data distribution, computation
distribution, processors synchronization, data exchanges)
* Advantages
* Greater control from the programmer
» Performances (if the code is well written!)
* Drawbacks
* Parallelism assembly code
 Performance portability
* Less transparency
Other solution
- Give more work to the compiler and to the runtime system!

l 0&’2610/— F. Desprez - UE Parallel alg. and prog. 2017-2018- 4

Parallel architectures

Private
memory Computer
Shared memory \
Coprocessor M
Thread I
CPU
\ — CPU

g ©

CPU / /1 CPU [

CPU

Main CPU L |

Tightly coupled Loosely coupled

T
- o

(a) (b) (c) (d) (e)

l &u'a,- F. Desprez - UE Parallel alg. and prog. 2017-2018-5

Shared memory machine model

Processors are connected to a large shared memory

- Also known as Symmetric Multiprocessors (SMPs)

- SGl, Sun, HP, Intel, SMPs IBM

- Multicore processors (except that caches are shared)
Scalability issues for large numbers of processors

- Usually <= 32 processors
» Uniform memory access (Uniform Memory Access, UMA)
» Lower cost for caches compared to the main memory

$ | $ | $

bus
I

shared $

| Note: $ = cache
Memory

. h'u’a,- F. Desprez - UE Parallel alg. and prog. 2017-2018-6

HPC architecture are getting more and more
hierarchical

* Parallelism is everywhere !

» At the architecture level : : : :
® SMP ' ! ! :
© NUMA L1 L1 L1 L1

» At the processor level L2 L2 L2 L2
@ Multicore chips L3 Cache

* Current (solid) trend: back to
the cc-NUMA era
» AMD Hypertransport or Intel
QuickPath to connect
multicore chips together in a
NUMA fashion

L1 L1 L1 L1
L2 L2 L2 L2
L3 Cache

Interconnect

bank

l &L’Z@- F. Desprez - UE Parallel alg. and prog. 2017-2018-7

How to program these parallel machines?

* The « good old » thread library
» A way to achieve the best performance for a particular instance of a
problem (architecture, application, data set)
* Not portable, most of the time...

The « user-friendly » (...) parallel programming environments
* MPI
- Standard for distributed programming
* OpenMP
- De-facto standard for shared-memory programming
* and all these great programming languages | won’t talk about today
- Cilk+, TBB, Charm++, UPC, X10, Chapel, OpenCL, OpenACC, ...

. &zz’a,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 8

OpenMP

I &L’Z&Ia/- F. Desprez - UE Parallel alg. and prog. 2017-2018-9

Multi-task programming model on shared
memory architecture

» Several tasks are executed in parallel
* Memory is shared (physically or virtually)
* Communication between tasks is done by reads and writes in the
shared memory
* Eg. The general-purpose multi-core processors share a common
memory
Tasks can be assigned to distinct cores

. &zxu’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 10

Multi-task programming model on shared
memory architecture

« The Pthreads library: POSIX thread library, adopted by most operating
systems

« The writing of a code requires a considerable number of lines
specifically dedicated to threads

« Example: parallelizing a loop involves
* Declare thread structures,
» create threads,
« compute loop boundaries,
« assign them to threads, ...

* OpenMP: a simpler alternative for the programmer

I hu’a,— F. Desprez - UE Parallel alg. and prog. 2017-2018- 11

Multi-task programming on UMA architectures

* Memory is shared

* Uniform Memory Access Architectures (UMA)
* Aninherent problem: memory contentions

l h'u'a/— F. Desprez - UE Parallel alg. and prog. 2017-2018- 12

Memory

Multi-task programming on UMA multicore
architectures

Memory Memory Memory

* Memory is directly attached to multicore chips
* Non-Uniform Memory Access architectures (NUMA)

I &Lu'a,— F. Desprez - UE Parallel alg. and prog. 2017-2018- 13

Multi-task programming on UMA multicore
architectures

i Jor

Memory Memory Memory

Distant access

Local access
l h'u'a/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 14

OpenMP

» A de-facto standard API to write shared memory parallel applications in
C, C++ and Fortran

» Consists of compiler directives, runtime routines and environment
variables

« Specification maintained by the OpenMP Architecture Review Board
(http://www.openmp.org)

» Current version of the specification: 4.5 (November 2015)

* Nextrelease 5.0

l 0&2422,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 15

Advantages of OpenMP

* A mature standard
» Speeding-up your applications since 1998
Portable
» Supported by many compilers, ported on many architectures
Allows incremental parallelization
Imposes low to no overhead on the sequential execution of the
program
» Just tell your compiler to ignore the OpenMP pragmas and you get
back to your sequential program
Supported by a wide and active community
» The specifications have been moving fast since revision 3.0 (2008) to
support:
* new kinds of parallelism (tasking)

new kinds of architectures (accelerators)
I EEEr—

OpenMP model characteristics

Avantages
* Transparent and portable thread management
« Easy programming
« Can be used with MPI (hybrid parallelism)

Drawbacks
* Data locality problem
« Shared but non-hierarchical memory
« Efficiency not guaranteed (impact of the material organization of the
machine)
* Limited scalability, moderate parallelism

I &L’Z&Ia/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 17

Introduction: execution model

* An OpenMP program is executed by a unique process (on one or many cores)
* Fork-Join Parallelism
* Master thread spawns a team of threads as needed
+ Parallelism is added incrementally: that is, the sequential program evolves into a
parallel program
* Entering a parallel region will create some threads (fork)
* Leaving a parallel region will terminate them (join)
* Any statement executed outside parallel regions are executed sequentially

fork
join
fork
join
fork
join

Master
thread

Parallel regions /

. &z/u'a/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 18

Introduction: threads

* Threads access the same resources as the main process
+ They have a stack (stack, stack pointer and clean instructions pointer)

Process

Stacks
(local variables)

Process

Threads

2017-2018- 19

I hu’a,— F. Desprez - UE Parallel alg. and prog.

Introduction: execution of an OpenMP program on
a multicore

The task management system of the operating system assigns the tasks on

the cores

[o)
coes [N KN EN

2017-2018 - 20

l 0&’2610/— F. Desprez - UE Parallel alg. and prog.

OpenMP structure: software architecture

OpenMP

Runtime Environment
Library variables

I &L’Z&Ia/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 21

OpenMP structure: directives/pragmas formats

« directive [clause[clause]..]

Fortran C/C++
ISOMP PARALLEL PRIVATE(a,b) & #pragma omp parallel private(a,b)
ISOMP FIRSTPRIVATE(c,d,e) firstprivate(c,d,e)
{
ISOMP END PARALLEL }

* The line is interpreted if openmp option to the compiler call otherwise
comment
— portability

. &zxu’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 22

OpenMP structure: prototyping

We have
* A Fortran 95 module OMP_LIB
* An C/C++ input file omp.h
that define the prototypes of all the functions of the OpenMP library

Fortran - C/C++

Program example #include <omp.h>
1$ USE OMP_LIB
ISOMP PARALLEL PRIVATE(a,b) &

tmp= OMP_GET_THREAD_NUM()
ISOMP END PARALLEL

I hu&,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 23

OpenMP structure: construction of a parallel region

fortran — C/CH++ —

#include <omp.h>
PROGRAM example
main () {
!1$ USE OMP_LIB
Int a,b,c:
Integer ::a, b, c
[* Sequential code sequentiel executed by

I Sequential code sequentiel executed by the master */
the master
#pragma omp parallel private(a,b) \
ISOMP PARALLELPRIVATE(a,b) & shared(c)
I$OMP SHARED(c)
. [* Parallel zone executed by all the
ﬂ I Parallel zone executed by all the threads */
I threads }
ISOMP END PARALLEL /* Sequential code */
I Sequential code }

END PROGRAM example

. h'u’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 24

Hello world !

void main()

{
int ID = 0;
printf(“ hello(%d) ", ID);
printf(“ world(%d) \n”, ID);

l &L’Z@- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 25

OpenMP’s Hello worid !

OpenMP include file
#include “omp.h” «—

void main() Parallel region with
{ default number of threads
#pragma omp parallel —_—

{ Runtime library

function to return a
int ID = omp_get_thread_num(); =~ thread ID.

printf(* hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

} Sample Output
} \ hello(1) hello(0) world(1)
End of the Parallel region world(0)
hello (3) hello(2) world(3)
world(2)

. &zz’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 26

OpenMP Basic Defs: Solution Stack

z>’. End User
> Application
X Directives, z Environment

OpenMP Runtime library
OS/system support for shared memory and threading

System layer

HW

Shared Address Space

. VAZXIZ I - Dcspre: - UE Parallel alg. and prog. 2017-2018- 27

IF clause of the PARALLEL directive

Conditional creation of a parallel region IF(logical _expression) clause

fortran

I Sequential code

ISOMP PARALLEL IF(expr)

I Parallel or sequential code depending of the expr value
ISOMP END PARALLEL

I Sequential code

The logical expression will be evaluated before entering the parallel region

. hu’a,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 28

How do threads interact?

* OpenMP is a multi-threading, shared address model
* Threads communicate by sharing variables

» Unintended sharing of data causes race conditions:
* race condition: when the program’s outcome changes as the threads
are scheduled differently

* To control race conditions
* Use synchronization to protect data conflicts

« Synchronization is expensive so
« Change how data is accessed to minimize the need for
synchronization

l 0&2422,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 29

OpenMP threads

Number of threads definition
« Through an environment variable: OMP_NUM_THREADS
* Through the routine: OMP_SET_NUM_THREADS()
» Through the clause NUM_THREADS() of the PARALLEL directive

Threads are numbered
- The number of threads is not necessary equal to the number of physical
cores
-thread #0 is the master task
-OMP_GET_NUM_THREADS(): number of threads
-OMP_GET_THREAD_NUM(): thread number
-OMP_GET_MAX_THREADS(): maximum number of threads

. &z/u’a,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 30

OpenMP structure: compilation and execution

ifort (ou icc) —openmp prog.f (INTEL)
f90 (ou cc ou CC) —openmp prog.f (SUN Studio)
gcc/gfortran —fopenmp —std=f95 prog.f (GNU)

export OMP_NUM_THREADS=2
Ja.out

ps —eLF
USER PID PPID LWP C NLWP SZ RSS PSR...

I &L’Z&Ia/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 31

The OpenMP memory model

+ All the threads have access to the
same globally shared memory

+ Each thread has access to its own
private memory area that can not be
accessed by other threads

+ Data transfer is performed through
shared memory and is 100%
transparent to the application

« The application programmer is
responsible for providing the
corresponding data-sharing attributes

. &zxu’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 32

Data sharing attributes

* Need to set the visibility of each variable that appears inside an
OpenMP parallel region using the following data-sharing attributes

» shared: the data can be read and written by any thread of the team. Al
changes are visible to all threads

» private: each thread is working on its own version of the data that cannot be
accessed by other threads of the team

» firstprivate: each thread is working on its own version of the variable. The
data is initialized using the value it had before entering the parallel region

» lastprivate: each thread is working on its own version of the variable. The
value of the last thread leaving the region is copied back to the variable.

l 0&2422,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 33

Variable status

The status of a variable in a parallel zone
« SHARED, it's located in the global | Program private_var.f

memory ISUSE OMP_LIB
* PRIVATE, it’'s located in the integer:: tmp =999
memory of each thread. It's value is | Call OMP_SET_NUM_THREADS(4)
undefined at the entrance of the I$OMP PARALLEL PRIVATE(tmp)
Zzone print *, tmp
tmp = OMP_GET_THREAD_NUM()
* Declaring the variable status print *, OMP_GET_THREAD_NUM(), tmp

- # pragma omp parallel private (list) |
- # pragma omp parallel firstprivate (list) I3OMP END PARALLEL

- # pragma omp parallel shared (list) print *, tmp

end

» Declaring a default status
DEFAULT(PRIVATE|SHARED|NONE) clause

. hu’a,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 34

Putting Threads to Work: the Worksharing Constructs

1 void simple_loop(int N, e omp for : distribute the

’ SeoR Sty iterations of a loop over

3 float *b)

4 { the threads of the

5 int i; -

g arallel region.
6 // %, N, a and b are shared by P g
default e Here, assigns N/P

7 #pragma omp parallel firstprivate (N) . .

s 1 iterations to each

9 // i is private by default thread, P being the

10 #pragma omp for

1 for (i = 1; i <= N; i++) { number of threads of

13 }

1 } e omp for comes with an

15 } . - 3
implicit barrier
synchronization at the
end of the loop one can
remove with the nowait
keyword.

l &L’Z@- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 35
Work sharing

* Distributing a loop between threads (// loop)

« Distribution of several sections of code between threads, one section of
code per thread (// sections)

* Running a portion of code on a single thread

» Execution of several occurrences of the same function by different
threads

» Execution by different threads of different work units, tasks

UE Parallel alg. and prog. 2017-2018 - 36

Work sharing: parallel loop

DO Directive in Fortran, for in C

Parallelism by distribution of iterations of a loop

* The way in which the iterations can be distributed can be specified in
the SCHEDULE clause (coded in the program or by an environment

variable)

* A global synchronization is performed at the end of construction END

DO (unless NOWAIT)

* Possibility to have several DO constructions in a parallel region
* The loop indices are integers and private
* Infinite loops and do while are not parallelizable

l &u'a,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 37

DO and PARALLEL DO Directives

Program loop

implicit none
integer, parameter :: n=1024
integer SN

real, dimension(n, n) :: tab
I$SOMP PARALLEL
! Replicated code
I$SOMP DO
doj=1,n ! Shared loop
doi=1,n ! Replicated loop
tab(i, j) = i*j
end do
end do
ISOMP END DO
I$OMP END PARALLEL
end program loop

Program parallelloop

implicit none
integer, parameter :: n=1024
integer A

real, dimension(n, n) :: tab
ISOMP PARALLEL DO
doj=1n I Shared loop
doi=1,n ! Replicated loop
tab(i, j) = i*j
end do
end do
ISOMP END PARALLEL DO
end program parallelloop

PARALLEL DO is a fusion of 2 directives
Beware: END PARALLEL DO includes a synchronization barrier!

. h'u’a,- F. Desprez - UE Parallel alg. and prog.

2017-2018 - 38

Work sharing: SCHEDULE

I$SOMP DO SCHEDULE(STATIC, packet-size)
By default packet-size = #_iterations/#_threads
Ex: 16 iterations (0 to 15), 4 threads: packet size by default

-

is 4

ISOMP DO SCHEDULE(DYNAMIC, packet-size)

Packets are distributed to free threads in a dynamic way

All the packets have the same size (except maybe the last t
one), by default the packet size is one

ISOMP DO SCHEDULE(GUIDED, packet-size)
Packet-size: minimal packet size (1 by default) except the II

last one t
Maximal packet size at the begining of the loop (here 2) I I

then decrease to balance the load I

I &L’Zt’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 39

Work sharing: SCHEDULE

Ex: 24 iterations, 3 threads

/\

1,2,..,7,8 m 17,18,..,24

static mode with
Packet size = # iterations/# threads

Cyclic: staltic

9,10,11,12
13,14,15

Greedy: dynamic Greedy: guided

. &z/u’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 40

Work sharing: SCHEDULE

The choice of the repartition mode can be delayed at the execution time
using SCHEDULE(RUNTIME)

Taking into account the environment variable OMP_SCHEDULE

-Ex
export OMP_SCHEDULE=“DYNAMIC,400”

I &L’Zt’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 41

A first example to illustrate OpenMP capabilities

Parallelize this simple code using OpenMP

£f=1.0

for (i 0; i < N; i++)

z[i] x[i] + y[i];
for (i = 0; i < M; i++)
a[i] = b[i] + c[i];

scale = sum (a, 0, m) + sum (z, 0, n) + f;

. &z/u’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 42

A first example to illustrate OpenMP capabilities

First create the parallel region and define the data-sharing attributes

private (f, i, scale)
{
£f=1.0

for (i
z[i]

0; i < n; i++)
x[i] + y[i];

for (1 = 0; 1 < m; i++)
a[i] = b[i] + c[i];

parallel region

scale = sum (a, 0, m) + sum (z, 0, n) + f;

} /* End of OpenMP parallel region */

I hub,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 43

A first example to illustrate OpenMP capabilities

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m)

e

IQ

for (1 = 0; i < n; i++) < =
2[i] = x[i] + y[il; Statements o
executed by all s

for (i = 0; i < m; i++) (tf'::ﬁthreadlls :)f é’
a[i] = b[i] + c[i]; epgra'e E
region ! =

o

scale = sum (a, 0, m) + sum (z, 0, n) + f; <G

} /* End of OpenMP parallel region */

At this point, all the threads execute the whole program (you won’t get any
speed-up from this!)

. &zxu’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 44

A first example to illustrate OpenMP capabilities

Now distribute the loop iterations over the threads using omp for

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m)

private (f, i, scale)

{ Statements executed
£f=1.0 <% by all the threads of
the parallel region o
#pragma omp for .9
for (i = 0; i < n; i++) parallel loop o))
z[i] = x[i] + y[i]; (work is distributed) e
—
#pragma omp for E
for (i = 0; i < m; i++) parallel loop f—
a[i] = b[i] + c[i]; (work is distributed) E
— 1
©

Statements executed
scale = sum (a, 0, m) + sum (z, 0, n) + f; €= by all the threads of
e the parallel region

} /* End of OpenMP parallel region */

I hub,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 45

Optimization #1: Remove Unnecessary Synchronizations

There are no dependencies between the two parallel loops, we remove the implicit
barrier between the two

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m)

private (f, i, scale)

{
£f=1.0

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

a[i] = b[i] + c[i];

parallel region

scale =sum (a, 0, m) + sum (z, 0, n) + f;

} /* End of OpenMP parallel region */

. h*u’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 46

Optimization #2: Don’t Go Parallel if the Workload is Small

We don’t want to pay the price of thread management if the workload is too small
to be computed in parallel

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m)

private (f, i, scale) if (n > some_threshold && m > some_threshold)

{
£=1.0

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

a[i] = b[i] + c[i];

scale = sum (a, 0, m) + sum (z, 0, n) + £f;

} /* End of OpenMP parallel region */

I hub,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 47

