
F. Desprez - UE Parallel alg. and prog. 2017-2018 - 1

Frédéric Desprez
INRIA

Shared Memory
Machines and
OpenMP
Programming

L3 Cache

L1
L2

L1
L2

L1
L2

L1
L2

Memory
bank

Memory
bank

Interconnect

L3 Cache

L1
L2

L1
L2

L1
L2

L1
L2

Some references

• OpenMP web site
• http://www.openmp.org

• http://www.openmp.org/specifications/

• OpenMP lecture, François Broquedis (Corse), CERMACS School 2016
• http://smai.emath.fr/cemracs/cemracs16/programme.php

• OpenMP lecture, Françoise Roch (Grenoble)

• IDRIS lecture and lab work
• http://www.idris.fr/formations/openmp/

• Using OpenMP , Portable Shared Memory Model, Barbara Chapman

• Parallel Programming in C with MPI and OpenMP, M.J. Quinn

• Programming Models for Parallel Computing, P. Balaji

• Parallel Programming – For Multicore and Cluster System, T. Rauber, G.

Rünger

2017-2018F. Desprez - UE Parallel alg. and prog. - 2

Introduction

2017-2018F. Desprez - UE Parallel alg. and prog. - 3

Compiler and/or runtime system

Operating system

Hardware

Abstractions to
describe

parallel computations

Abstractions to
describe

communications

Parallel applications

Programming
model

Langage or API
Primitives/mechanisms

System calls API

Hardware architecture
(hardware/software frontier)

Concepts System abstraction System implementation

Introduction
Programming model: how to write (and describe) a parallel program

We will learn MPI (Message Passing Interface)
• The programmer manages everything (data distribution, computation
distribution, processors synchronization, data exchanges)

• Advantages
• Greater control from the programmer
• Performances (if the code is well written!)

• Drawbacks
• Parallelism assembly code
• Performance portability
• Less transparency

Other solution
- Give more work to the compiler and to the runtime system!

2017-2018F. Desprez - UE Parallel alg. and prog. - 4

Parallel architectures

2017-2018F. Desprez - UE Parallel alg. and prog. - 5

Shared memory machine model
Processors are connected to a large shared memory

- Also known as Symmetric Multiprocessors (SMPs)
- SGI, Sun, HP, Intel, SMPs IBM
- Multicore processors (except that caches are shared)

Scalability issues for large numbers of processors
- Usually <= 32 processors

• Uniform memory access (Uniform Memory Access, UMA)
• Lower cost for caches compared to the main memory

P1

bus

$

Memory

P2

$

Pn

$

Note: $ = cache
shared $

2017-2018F. Desprez - UE Parallel alg. and prog. - 6

L3 Cache

L1
L2

L1
L2

L1
L2

L1
L2

Memory
bank

Memory
bank

Interconnect

L3 Cache

L1
L2

L1
L2

L1
L2

L1
L2

• Parallelism is everywhere !
‣ At the architecture level
๏SMP
๏NUMA

‣ At the processor level
๏Multicore chips

• Current (solid) trend: back to
the cc-NUMA era
‣ AMD Hypertransport or Intel

QuickPath to connect
multicore chips together in a
NUMA fashion

HPC architecture are getting more and more
hierarchical

2017-2018F. Desprez - UE Parallel alg. and prog. - 7

How to program these parallel machines?
• The « good old » thread library

• A way to achieve the best performance for a particular instance of a
problem (architecture, application, data set)

• Not portable, most of the time...

The « user-friendly » (...) parallel programming environments
• MPI

- Standard for distributed programming
• OpenMP

- De-facto standard for shared-memory programming
• and all these great programming languages I won’t talk about today

- Cilk+, TBB, Charm++, UPC, X10, Chapel, OpenCL, OpenACC, ...

2017-2018F. Desprez - UE Parallel alg. and prog. - 8

2017-2018F. Desprez - UE Parallel alg. and prog. - 9

Multi-task programming model on shared
memory architecture

• Several tasks are executed in parallel
• Memory is shared (physically or virtually)
• Communication between tasks is done by reads and writes in the

shared memory
• Eg. The general-purpose multi-core processors share a common

memory
• Tasks can be assigned to distinct cores

2017-2018 - 10F. Desprez - UE Parallel alg. and prog.

Multi-task programming model on shared
memory architecture

• The Pthreads library: POSIX thread library, adopted by most operating
systems

• The writing of a code requires a considerable number of lines
specifically dedicated to threads

• Example: parallelizing a loop involves
• Declare thread structures,
• create threads,
• compute loop boundaries,
• assign them to threads, ...

• OpenMP: a simpler alternative for the programmer

2017-2018 - 11F. Desprez - UE Parallel alg. and prog.

Multi-task programming on UMA architectures

Cache

Memory

…

• Memory is shared
• Uniform Memory Access Architectures (UMA)
• An inherent problem: memory contentions

CPU CPU

Cache

CPU

Cache

2017-2018 - 12F. Desprez - UE Parallel alg. and prog.

Multi-task programming on UMA multicore
architectures

• Memory is directly attached to multicore chips
• Non-Uniform Memory Access architectures (NUMA)

Cache

Memory

Cache

Memory

Cache

Memory

SMT SMTSMT SMT SMT SMT SMT SMT SMT SMT SMT SMT
…

2017-2018 - 13F. Desprez - UE Parallel alg. and prog.

Cache

Memory

Cache

Memory

Cache

Memory

SMT SMTSMT T0 SMT SMT SMT T1 SMT SMT SMT SMT

Distant access
Local access

2017-2018 - 14F. Desprez - UE Parallel alg. and prog.

Multi-task programming on UMA multicore
architectures

OpenMP
• A de-facto standard API to write shared memory parallel applications in

C, C++ and Fortran

• Consists of compiler directives, runtime routines and environment

variables

• Specification maintained by the OpenMP Architecture Review Board

(http://www.openmp.org)

• Current version of the specification: 4.5 (November 2015)

• Next release 5.0

2017-2018F. Desprez - UE Parallel alg. and prog. - 15

Advantages of OpenMP

• A mature standard
• Speeding-up your applications since 1998

• Portable
• Supported by many compilers, ported on many architectures

• Allows incremental parallelization
• Imposes low to no overhead on the sequential execution of the

program
• Just tell your compiler to ignore the OpenMP pragmas and you get

back to your sequential program
• Supported by a wide and active community

• The specifications have been moving fast since revision 3.0 (2008) to
support:
• new kinds of parallelism (tasking)
• new kinds of architectures (accelerators)

2017-2018F. Desprez - UE Parallel alg. and prog. - 16

OpenMP model characteristics

Avantages
• Transparent and portable thread management
• Easy programming
• Can be used with MPI (hybrid parallelism)

Drawbacks
• Data locality problem
• Shared but non-hierarchical memory
• Efficiency not guaranteed (impact of the material organization of the
machine)

• Limited scalability, moderate parallelism

2017-2018 - 17F. Desprez - UE Parallel alg. and prog.

Introduction: execution model
• An OpenMP program is executed by a unique process (on one or many cores)
• Fork-Join Parallelism

• Master thread spawns a team of threads as needed
• Parallelism is added incrementally: that is, the sequential program evolves into a

parallel program
• Entering a parallel region will create some threads (fork)
• Leaving a parallel region will terminate them (join)
• Any statement executed outside parallel regions are executed sequentially

Parallel regions

Master
thread

fo
rk

jo
in

fo
rk

fo
rk

jo
in

jo
in

2017-2018 - 18F. Desprez - UE Parallel alg. and prog.

Introduction: threads

• Threads access the same resources as the main process
• They have a stack (stack, stack pointer and clean instructions pointer)

Shared variables space Stacks
(local variables)

Process

Threads

Process

2017-2018 - 19F. Desprez - UE Parallel alg. and prog.

Task manager

Introduction: execution of an OpenMP program on
a multicore
The task management system of the operating system assigns the tasks on
the cores

0 1 2 3 Cores

2017-2018 - 20F. Desprez - UE Parallel alg. and prog.

OpenMP

Runtime
Library

Compiler
Directives

Environment
variables

OpenMP structure: software architecture

2017-2018 - 21F. Desprez - UE Parallel alg. and prog.

OpenMP structure: directives/pragmas formats

• directive [clause[clause]..]

• The line is interpreted if openmp option to the compiler call otherwise
comment
→ portability

!$OMP PARALLEL PRIVATE(a,b) &
!$OMP FIRSTPRIVATE(c,d,e)
...
!$OMP END PARALLEL

#pragma omp parallel private(a,b)
firstprivate(c,d,e)

{ …
}

Fortran C/C++

2017-2018 - 22F. Desprez - UE Parallel alg. and prog.

OpenMP structure: prototyping

We have
• A Fortran 95 module OMP_LIB
• An C/C++ input file omp.h

that define the prototypes of all the functions of the OpenMP library

Program example
!$ USE OMP_LIB
!$OMP PARALLEL PRIVATE(a,b) &

...
tmp= OMP_GET_THREAD_NUM()
!$OMP END PARALLEL

#include <omp.h>

Fortran C/C++

2017-2018 - 23F. Desprez - UE Parallel alg. and prog.

PROGRAM example

!$ USE OMP_LIB

Integer :: a, b, c

! Sequential code sequentiel executed by
the master

!$OMP PARALLELPRIVATE(a,b) &
!$OMP SHARED(c)
.
! Parallel zone executed by all the
! threads

!$OMP END PARALLEL

! Sequential code

END PROGRAM example

#include <omp.h>

main () {

Int a,b,c:

/* Sequential code sequentiel executed by
the master */

#pragma omp parallel private(a,b) \
shared(c)

{
/* Parallel zone executed by all the

threads */
}

/* Sequential code */

}

fortran C/C++

OpenMP structure: construction of a parallel region

2017-2018 - 24F. Desprez - UE Parallel alg. and prog.

Hello world !

void main()
{

int ID = 0;
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}

2017-2018F. Desprez - UE Parallel alg. and prog. - 25

OpenMP’s Hello world !

#include “omp.h”
void main()
{
#pragma omp parallel
{

int ID = omp_get_thread_num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

2017-2018F. Desprez - UE Parallel alg. and prog. - 26

OpenMP include file

Parallel region with
default number of threads

Runtime library
function to return a
thread ID.

End of the Parallel region

Sample Output

hello(1) hello(0) world(1)
world(0)
hello (3) hello(2) world(3)
world(2)

OpenMP Basic Defs: Solution Stack

2017-2018F. Desprez - UE Parallel alg. and prog. - 27

IF clause of the PARALLEL directive

Conditional creation of a parallel region IF(logical_expression) clause

The logical expression will be evaluated before entering the parallel region

! Sequential code

!$OMP PARALLEL IF(expr)

! Parallel or sequential code depending of the expr value

!$OMP END PARALLEL

! Sequential code

fortran

2017-2018 - 28F. Desprez - UE Parallel alg. and prog.

How do threads interact?
• OpenMP is a multi-threading, shared address model

• Threads communicate by sharing variables

• Unintended sharing of data causes race conditions:
• race condition: when the program’s outcome changes as the threads

are scheduled differently

• To control race conditions
• Use synchronization to protect data conflicts

• Synchronization is expensive so
• Change how data is accessed to minimize the need for

synchronization

2017-2018F. Desprez - UE Parallel alg. and prog. - 29

OpenMP threads

Number of threads definition
• Through an environment variable: OMP_NUM_THREADS
• Through the routine: OMP_SET_NUM_THREADS()
• Through the clause NUM_THREADS() of the PARALLEL directive

Threads are numbered
- The number of threads is not necessary equal to the number of physical
cores

- thread #0 is the master task
- OMP_GET_NUM_THREADS(): number of threads
- OMP_GET_THREAD_NUM(): thread number
- OMP_GET_MAX_THREADS(): maximum number of threads

2017-2018 - 30F. Desprez - UE Parallel alg. and prog.

OpenMP structure: compilation and execution

ifort (ou icc) –openmp prog.f (INTEL)
f90 (ou cc ou CC) –openmp prog.f (SUN Studio)
gcc/gfortran –fopenmp –std=f95 prog.f (GNU)
export OMP_NUM_THREADS=2

./a.out

ps –eLF
USER PID PPID LWP C NLWP SZ RSS PSR …

2017-2018 - 31F. Desprez - UE Parallel alg. and prog.

The OpenMP memory model

2017-2018F. Desprez - UE Parallel alg. and prog. - 32

• All the threads have access to the
same globally shared memory

• Each thread has access to its own
private memory area that can not be
accessed by other threads

• Data transfer is performed through
shared memory and is 100%
transparent to the application

• The application programmer is
responsible for providing the
corresponding data-sharing attributes

Data sharing attributes

• Need to set the visibility of each variable that appears inside an
OpenMP parallel region using the following data-sharing attributes

• shared: the data can be read and written by any thread of the team. All
changes are visible to all threads

• private: each thread is working on its own version of the data that cannot be
accessed by other threads of the team

• firstprivate: each thread is working on its own version of the variable. The
data is initialized using the value it had before entering the parallel region

• lastprivate: each thread is working on its own version of the variable. The
value of the last thread leaving the region is copied back to the variable.

2017-2018F. Desprez - UE Parallel alg. and prog. - 33

Variable status
The status of a variable in a parallel zone

• SHARED, it’s located in the global
memory

• PRIVATE, it’s located in the
memory of each thread. It’s value is
undefined at the entrance of the
zone

• Declaring the variable status
- # pragma omp parallel private (list)
- # pragma omp parallel firstprivate (list)
- # pragma omp parallel shared (list)

• Declaring a default status
• DEFAULT(PRIVATE|SHARED|NONE) clause

program private_var.f

!$USE OMP_LIB

integer:: tmp =999

Call OMP_SET_NUM_THREADS(4)

!$OMP PARALLEL PRIVATE(tmp)

print *, tmp

tmp = OMP_GET_THREAD_NUM()

print *, OMP_GET_THREAD_NUM(), tmp

!$OMP END PARALLEL

print *, tmp

end

2017-2018 - 34F. Desprez - UE Parallel alg. and prog.

Putting Threads to Work: the Worksharing Constructs

2017-2018F. Desprez - UE Parallel alg. and prog. - 35

Work sharing

• Distributing a loop between threads (// loop)
• Distribution of several sections of code between threads, one section of
code per thread (// sections)
• Running a portion of code on a single thread
• Execution of several occurrences of the same function by different
threads
• Execution by different threads of different work units, tasks

2017-2018 - 36F. Desprez - UE Parallel alg. and prog.

Work sharing: parallel loop

DO Directive in Fortran, for in C

Parallelism by distribution of iterations of a loop

• The way in which the iterations can be distributed can be specified in
the SCHEDULE clause (coded in the program or by an environment
variable)

• A global synchronization is performed at the end of construction END
DO (unless NOWAIT)

• Possibility to have several DO constructions in a parallel region
• The loop indices are integers and private
• Infinite loops and do while are not parallelizable

2017-2018 - 37F. Desprez - UE Parallel alg. and prog.

DO and PARALLEL DO Directives

Program loop
implicit none
integer, parameter :: n=1024
integer :: i, j
real, dimension(n, n) :: tab
!$OMP PARALLEL

... ! Replicated code
!$OMP DO

do j=1, n ! Shared loop
do i=1, n ! Replicated loop

tab(i, j) = i*j
end do

end do
!$OMP END DO

!$OMP END PARALLEL
end program loop

Program parallelloop
implicit none
integer, parameter :: n=1024
integer :: i, j
real, dimension(n, n) :: tab
!$OMP PARALLEL DO

do j=1 n ! Shared loop
do i=1, n ! Replicated loop

tab(i, j) = i*j
end do

end do
!$OMP END PARALLEL DO

end program parallelloop

PARALLEL DO is a fusion of 2 directives
Beware: END PARALLEL DO includes a synchronization barrier!

2017-2018 - 38F. Desprez - UE Parallel alg. and prog.

Work sharing: SCHEDULE
!$OMP DO SCHEDULE(STATIC, packet-size)
By default packet-size = #_iterations/#_threads
Ex: 16 iterations (0 to 15), 4 threads: packet size by default
is 4

t

!$OMP DO SCHEDULE(DYNAMIC, packet-size)
Packets are distributed to free threads in a dynamic way
All the packets have the same size (except maybe the last

one), by default the packet size is one

!$OMP DO SCHEDULE(GUIDED, packet-size)
Packet-size: minimal packet size (1 by default) except the

last one
Maximal packet size at the begining of the loop (here 2)

then decrease to balance the load

0
1

2
3

4

5

6

7

8

9

10

11

12
13
14
15

0 1 2 3

5
t

46
7

9 10
11

12 13
8

14 15

0
1

2
3

5

4

t

6

78 9

10 11 1213
1415

2017-2018 - 39F. Desprez - UE Parallel alg. and prog.

Work sharing: SCHEDULE

1,2,..,7,8 9,10,..,16 17,18,..,24

1,2

19,20

3,4

21,22

5,6

17,18

23,24

7,8

13,14

9,10

15,16

11,12

1,2

17,18

3,4

21,22

5,6

19,20

11,12 9,10 7,8

13,14 15,16

23,24

static mode with
Packet size = # iterations/# threads

Cyclic: static

Greedy: dynamic

1,2,3,4

24

5,6,7,8 9,10,11,12

19,20,21 16,17,18 13,14,15

22 23

Greedy: guided

Ex: 24 iterations, 3 threads

2017-2018 - 40F. Desprez - UE Parallel alg. and prog.

Work sharing: SCHEDULE

The choice of the repartition mode can be delayed at the execution time
using SCHEDULE(RUNTIME)

Taking into account the environment variable OMP_SCHEDULE

- Ex
export OMP_SCHEDULE=“DYNAMIC,400”

2017-2018 - 41F. Desprez - UE Parallel alg. and prog.

A first example to illustrate OpenMP capabilities

2017-2018F. Desprez - UE Parallel alg. and prog. - 42

Parallelize this simple code using OpenMP

A first example to illustrate OpenMP capabilities

2017-2018F. Desprez - UE Parallel alg. and prog. - 43

First create the parallel region and define the data-sharing attributes

A first example to illustrate OpenMP capabilities

2017-2018F. Desprez - UE Parallel alg. and prog. - 44

At this point, all the threads execute the whole program (you won’t get any
speed-up from this!)

A first example to illustrate OpenMP capabilities

2017-2018F. Desprez - UE Parallel alg. and prog. - 45

Now distribute the loop iterations over the threads using omp for

Optimization #1: Remove Unnecessary Synchronizations

2017-2018F. Desprez - UE Parallel alg. and prog. - 46

There are no dependencies between the two parallel loops, we remove the implicit
barrier between the two

Optimization #2: Don’t Go Parallel if the Workload is Small

2017-2018F. Desprez - UE Parallel alg. and prog. - 47

We don’t want to pay the price of thread management if the workload is too small
to be computed in parallel

