Parallel
Architectures

Frédéric Desprez
INRIA

&z'ub,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 1

Some references

 Lecture “Calcul hautes performance — architectures et modeles de
programmation”, Francoise Roch, Observatoire des Sciences de I'Univers
de Grenoble Mesocentre CIMENT

4 visions about HPC - A chat, X. Vigouroux, Bull

 Parallel Programming — For Multicore and Cluster System, T. Rauber,
G. Runger

. &Z’Z&IQ/— F. Desprez - UE Parallel alg. and prog. 2017-2018-2

Lecture summary

* Introduction
» Models of parallel machines

e Multicores/GPU

* Interconnection networks

. &z'zzb/- F. Desprez - UE Parallel alg. and prog. 2017-2018-3

MODELS OF PARALLEL
MACHINES

. &zu’a,- F. Desprez - UE Parallel alg. and pro

Parallel architectures

Coprocessor
Thread \

é CPU
CPU / /‘

Main CPU

Tightly coupled

—¢

Private
memory
Shared memory
M
CPU
CPU
M
M
CPU
CPU

Computer

N

Inter-
net

Loosely coupled

(@) (b)

. &z'zzb/- F. Desprez - UE Parallel alg. and prog. 2017-2018-5

(c)

(d)

»—

()

A generic parallel machine

Interconnection network

|
|
u Memory Memory Memory

* Where is the memory?
* |s it connected directly to the processors?
« What is the processor connectivity?

. &zu’a,- F. Desprez - UE Parallel alg. and prog. 2017-2018-6

Parallel machines models

Flynn’s classification
- Characterizes machines according to their flow of data and instructions

Single Multiple
Instruction Instructions
Singl
nge SISD MISD

Data

VutPlel SIMD | MIMD

Flynn, M., "Some Computer Organizations and Their Effectiveness". IEEE Trans. Comput. C-21: 948., 1972.

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-7

SISD: Single Instruction, Single Data stream

"Classical" sequential machines
Each operation is performed on one data at a time

Fl

B/ o UC = UT |=+um

UC = Control Unit (responsible for the sequencing of instructions)
UT = Processing Unit (performs the operations)

FI = Instructions Flow

UM = Memory Unit (contains instructions and data)

FD = Data Flow

Von Neuman’s model (1945)

. &zub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-8

MISD: Multiple Instruction stream, Single Data
stream

Specialized "systolic" type machines
Processors arranged with a fixed topology
Strong synchronization

Fl

— 1 1

UM UucC ucC UC
E/S —» * FI { FI { FI
FD FD FD
|—> — UT — UT —| UT ~|

. &1/26,0/- F. Desprez - UE Parallel alg. and prog. 2017-2018-9

SIMD: Single Instruction stream, Multiple Data
stream

Totally synchronized calculation units
Conditional execution with masking flag

Fl FD FD
o UT - UM - -

LY FD FD
/s — o UC H— UT |[==|UM|<"=UM |-

FD FD
—= T | UM |= »

» Machines adapted to very regular processing (matrix operations, FFT,
image processing)
* Not adapted at all to irregular operations

. &z'zzb/- F. Desprez - UE Parallel alg. and prog. 2017-2018-10

Conditionals in SIMD

« Masking flag

» Used to prevent processors from performing some operations

if (B==0)
conditional statement thenC=A
else C=A/B
ey Al__s] Al_4] A1) N
initial values » s 2| [0 |»
c e8| |eC@m| | e[
Processer 0 Processer 1 Processor 2 Processer 3
Idle Idle
sC 3| (a3 [aCc3] | aCm
execute 1| [|3 |
“then” branch |cC=3] | <3| [3| | c[@
Procosser 0 Processer 1 Procossor 2 Processer 3
Il Idle
s 3| a3l a3 [A
. exszcute 20| 3l |3l |
else” branch |3 |cCa| |l | cCm
Processer 0 Processer 1 Processor 2 Processor 3

. &zu’a,- F. Desprez - UE Parallel alg. and prog.

2017-2018 - 11

Some examples of SIMD machines

« 80’s/90’s parallel machines
e llliac IV, MPP, DAC, Connection Machine CM-1/2, MasPar MP-1/2

* A great return today
* Intel processors and SSE / SSE-2 mode (vector units)

» 128-Dbit vector registers
* 16 floats (8 bits), 8 short integers (16 bits), 4 integers (32 bits)
« 2 floats (64 bits) for SSE-2

* Altivec (Velocity Engine, VMX)

» Co-processors
 GPGPU nVidia G80
 ClearSpeed array processor (2 control processors

+ 192 processors)

. &Z’Z&IQ/— F. Desprez - UE Parallel alg. and prog. 2017-2018- 12

MIMD: Multiple Instructions stream, multiple data
stream
Multi-Processor Machines

Each processor runs its own code asynchronously and independently
Two sub-classes

Shared memory Distributed memory
FI
FI FD ES —% M O -
. . E/S F1 FD - -
FI FD - -
’—>UC FI UT FD “ F=.U(;_>U"[‘<_>UM_]

A mix between SIMD and MIMD: SPMD (Single Program, Multiple Data)

. &zu’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018-13

SIMD vs MIMD

« SIMD Platforms
* Designed for specific applications
« Complicated (and long) design, no "on-shelf" processors
Less equipment (one control unit)
*Need less memory for instructions (single program)
* Used heavily for current co-processors

« MIMD Platforms

* Works for a wide variety of applications

. >3 :
*Less expensive (components on shelf, % é
short design) el . g 3

* Need more memory (OS = e
ry (OS and g g

program on each processor) e o

SIMD architecture MIMD architecture

. &z'ub,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 14

Raina’s classification

Taking into account the address space

-SASM (Single Address space, Shared Memory)
Shared memory

- DADM (Distributed Address space, Distributed Memory)
Distributed memory, without access to remote data. The exchange of data
between processors is necessarily effected by passing messages, by
means of a communication network

- SADM (Single Address space, Distributed Memory)
Distributed memory, with global address space, possibly allowing access to
data located on other processors

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 15

Raina’s classification, contd.
The type of memory access implemented

NORMA (No Remote Memory Access)
No means of access to remote data, requiring the message passing
UMA (Uniform Memory Access)
Symmetric access to memory, identical cost for all processors
NUMA (Non-Uniform Memory Access)
The access performance depends on the location of the data
CC-NUMA (Cache-Coherent NUMA)
Type of NUMA architecture integrating caches
OSMA (Operating System Memory Access)
The remote data accesses are managed by the operating system, which handles
page faults at the software level and handles remote copy/send requests
COMA (Cache Only Memory Access)
The local memories behave like caches, so that a data item has neither a proprietary
processor nor a determined location in memory

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 16

Raina’s classification, contd.

MIMD
DADM SASM SADM
NORMA UMA NUMA CC-NUMA OSMA COMA
Cray XTs Sequent Symmetry CRAY T3D, E, F Dash Munin DDM
IBM BlueGene CRAY X, Y, C Flash lvy KSR 1.2
SUN Constellation SGI Power Challenge SGI Origin Koan

SGI NUMAflex Myoan

. &zub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-17

Parallel Programming Models

The programming model consists of the languages and libraries that will allow to
have an abstraction of the machine

Control
- How is parallelism created (implicit or explicit)?

- What are the sequences between operations (synchronous or asynchronous)?
Data

- What are the private and shared data?

- How are these data accessed and / or communicated?
Synchronization

- What operations can be used to coordinate parallelism?
- What are atomic (indivisible) operations?
Cost

- How can we calculate the cost of each previous item?

. &Z’Z&IQ/— F. Desprez - UE Parallel alg. and prog. 2017-2018- 18

A simple example: the sum

A function f is applied to the elements of an array A and the sum

n—1
> S CALEZD
Questions =0
-Where is A? In a central memory? Distributed?
- What will be the work done by the processors?
- How will they coordinate themselves to achieve a single outcome?

A = data array /R A O
fA=1(A) . f
s = sum(fA) 72 NG A A O |
sum
S.

. &z’ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-19

Shared memory

The program is a set of control threads
* They can sometimes be created dynamically during execution in some
languages
» Each thread has its own private data set (local stack variables)
* Set of shared variables (static variables, shared blocks, global stack)
» Threads communicate by writing and reading shared variables
* They synchronize on shared variables

Shared memory

S £
—\ S=..

o Private - g
memory

A

l &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 20

<
]
)

S

Parallelization strategy 1 ,
> fCAlZD
Shared Memory strategy i=0
- Small number of processors (p << n = size(A))
- Connected to a single central memory
Parallel decomposition
- Each evaluation and each partial sum is a task
Assign n / p numbers to each processor p
- Each of them calculates private results and a partial sum
- Gather the p local sums and calculate the total sum
Two classes of data

» Shared (logically)
* The n numbers, the global sum

* Private (logically)
» Local evaluations of functions XXX XYY

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 21

Shared memory "code” for the computation of the
sum

fork(sum,a[0:n/2-1]);

sum(a[n/2,n-1]); static int s = 0;
Thread 1 Thread 2
fori=0, n/2-1 fori=n/2, n-1
s =s + f(A[i]) s =s + f(A[i])

 What is the problem with this program?

A race condition occurs when

« Two processors (or two threads) access the same variable (and
at least one of them performs a write)

« The accesses are competing (not synchronized) and they can
appear at the same time

. &Z/ZJIG/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 22

Shared memory "code" for the computation of the
sum, contd.

— 2
A= | 3| 95 Fx) =x static int s = 0;
Thread 1 Thread 2
compute f([A[i]) and put in reg0 9 compute f([A[i]) and put in reg0 25
regl =s 0 regl =s 0
reg1 =reg1 + reg0 9 reg1 =reg1 + reg0 25
s =reg1 9 s = reg1 25

« Suppose that A = [3,5], f(x) = x% and s=0 at the start
- For the result to be correct we need to have s = 32 + 52 = 34 at the end
 But here it can be 34, 9, or 25

« Atomic operations are read and write
» We will not see a mixture of numbers but the operation + = is not atomic
« All computations take place in private registers

. &Z’Z&IQ/— F. Desprez - UE Parallel alg. and prog. 2017-2018 - 23

Improved code for the sum

staticint s = 0;

static lock Ik;
Thread 1 Thread 2
local s1=0 local s2=0
fori=0, n/2-1 fori=n/2, n-1
local_s1 =local_s1 + f(A[i]) local_s2= local_s2 + f(A[i])
lock(lk); lock(lk);
s =s + |ocal s1 s =s +local_s2
unlock(lk); unlock(Ik);

 Since the addition is associative, one can change the order

* Most computations take place on private variables
- The frequency of sharing is also reduced, which can improve the speed
- But there is always competition for updating s

- It can be deleted with locks (only one thread can have a lock at one time,
the other waits)

l &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 24

Shared memory machine model

Processors are connected to a large shared memory
- Also known as Symmetric Multiprocessors (SMPs)
- SGI, Sun, HP, Intel, SMPs IBM
- Multicore processors (except that caches are shared)
Scalability issues for large numbers of processors
- Usually <= 32 processors
Advantage: Uniform memory access (Uniform Memory Access, UMA)
Access code: lower cost for caches compared to the main memory

$ 18 19

bus
]

shared $

Note: $ = cache

Memory

. &zz&&/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 25

Extensibility Issues for Shared Memory Architectures

Why not put more processors (with larger memory)?
- Memory bus becomes a bottleneck
- Caches must remain consistent

Example: Parallel Spectral Transform Shallow Water Model (PSTSWM)
- Experimental results of Pat Worley (ORNL)
- Important core of atmospheric models
- 99% of the floating operations are additions or multiplications

- But the code uses data on all the memory with low re-use of the loaded data (bus
use and frequent shared memory)

- Experiments with sequential performance (a copy of the code running

independently by increasing the number of processors used)
- Normally the best case for shared memory: no sharing
- But the data do not all fit in the registers and caches

. &z'ub,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 26

Scalability Issues for Shared Memory Architectures, contd.

Performance of Spectral Shallow Water Model

(IBM p690 experiments)
L 1800 :
- Performance degradation is | ' ' " 1procs. ——
a function of the number of " 16 procs.
processors involved 1400 24 procs. —s— —

« No data sharing between
codes so perfect
parallelism

1200 32 procs. =—t=— —

1000

800

* Code executed for 18 800

vertical levels with several
horizontal sizes

MFlopsisecond/processor

400

200

)
TS T10 T21 T42 T85

Horizontal Resolution (18 vertical levels)
Process scaling on IBM p690

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY UT-BATTELLE
28

Crédits: Pat Worley, ORNL

. &zu’a/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 27

Distributed Shared Memory

Memory is logically shared but physically distributed
- Any processor can access any address in memory

- The lines (or pages) of cache lines are exchanged in the machine
Example: SGI platforms

- Scalable to 512 nodes (SGI Altix (Columbia) @ NASA / Ames)
Problem

- Cache Coherence Protocols
- How to maintain consistency between copies of the same memory area

$ $ $ The cache lines (or pages) must
be large enough to cushion the
Network overhead
' ' ' = Locality of data critical for
performance
memory | | memory memory NUMA

. &zz&&/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 28

Programming model: message passing

The program consists of a set of named processes
» Generally at the start of the program
* No data sharing: a control thread and a local address space
« Data is partitioned between local processes
Processes communicate with explicit send / receive pairs
» Coordination is implicit in each communication event
« MPI (Message Passing Interface) is the most used API

Private
| [

s: 12 s: 14 s: 11
Receive Pn,s

3| 4 N [

' Send P1,s

Network

2017-2018- 29

Compute s = A[1]+A[2] on each processor

° First possible solution - what can crash?

Processor 1 Processor 2
xlocal = A[1] xlocal = A[2]
send xlocal, proc2 send xlocal, proc1
receive xremote, proc2 receive xremote, proc1
s = xlocal + xremote s = xlocal + xremote

° If the send / receive behave like the telephone system?
° Like the surface mail system?

° Second possible solution

Processor 1 Processor 2
xlocal = A[1] xlocal = A[2]
send xlocal, proc2 receive xremote, proc1
receive xremote, proc2 send xlocal, proc
s = xlocal + xremote s = xlocal + xremote

° What happens if we have more processors?

l &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 30

Distributed memory

Examples

*Cray XT4, XT 5

* PC clusters (Berkeley NOW, Beowulf)
« Each processor has its own memory and cache, but can not access the
memory of others
« Each "node" has its own network interface (NI) for all communications and
synchronizations

@I CHN En

Memory Memory ... | Memory

Interconnection system

Beowulf (T. Sterling)

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 31

* > seieclv .*

CHEY) (o9) ¢

il Al

Nl I

[[}

¥ n N

e
o
gt

=X
(o

S

l &z'u’a/— F. Desprez - UE Parallel alg. and prog. 2017-2018 - 32

Google cluster 1997

\ e —

2017-2018- 33

Google’'Data centers ~

» ~ 20 data centers containing more than one
million servers around the world

e 40 servers / rack

_‘,- : .' !
Sl
-l ||
o
n __ v
N
-
oy |
‘" |
/)"‘Lf:
o |
»
|
|
i |
<]

W R R U Q Q€ un‘ n‘p‘:vpﬁ,’n‘,"u‘f D\‘. I

- UE Parallel alg. and prog. 2017-2018 - 34

Adresse électronique Mot de passe

facebook

W Facebook vous permet de rester en contact et d'échanger avec les personnes qui vous entourent.

Building Efficient Data Centers with the Open Compute

Project
par Jonathan Heiliger, jeudi 7 avril 2011, 10:45

A small team of Facebook engineers spent the past two
years tackling a big challenge: how to scale our
computing infrastructure in the most efficient and
economical way possible.

[7] Articles de Facebook

Engineering) _ '
) Working out of an electronics lab in the basement of our
D é‘;:f:\?ersl:; Facebook Palo Alto, California headquarters, the team designed
our first data center from the ground up; a few months
later we started building it in Prineville, Oregon. The
Abonnement

project, which started out with three people, resulted in
Articles de Facebook Compute Project us building our own custom-designed servers, power
Engineering supplies, server racks, and battery backup systems.

Because we started with a clean slate, we had total control over every part of the system,
from the software to the servers to the data center. This meant we could:

= Use a 480-volt electrical distribution system to reduce energy los: - -0OPE About~ Learn~ Buy Participate~ Projects~ News Contact Signin~v O,

= Remove anything in our servers that didn't contribute to efficiency Fompe o
= Reuse hot aisle air in winter to both heat the offices and the outsit

the data center.

Eliminate the need for a central uninterruptible power supply.

The result is that our Prineville data center uses 38 percent less energy
as Facebook’s existing facilities, while costing 24 percent less.

Take control of your _
technology future 1]

The Open Compute Project (OCP) is reimagining hardware, making it more
efficient, flexible, and scalable. Join our global community of technology

leaders working together to break open the black box of proprietary IT

infrastructure to achieve greater choice, customization, and cost savings.

http://opencompute.org/

. &z'zzb/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 35

The Million-Server Data Center

COOLING: High-efficiency water-based cooling STRUCTURE: A 24 000-square-meter facility POWER: Two power
systems—less energy-intensive than traditional houses 400 containers. Delivered by trucks, the substations feed a total of
chillers—circulate cold water through the containers attach te aspineinfrastructure that 300 megawatts to the data
containers to remave heat, eliminating the need feeds network connectivity, power, and water. center, with 200 MW used for
for air-conditioned rooms. The data center has no conventional raised floors. computing equipment and 100

MW for cocling and electrical
losses. Batteries and generators
provide backup power.

Power and water
distribution

Water-based
cooling systeam

CONTAINER: Each 675-
cubic-meter container houses
2500 servers, about 10 times

asmany as conventional
data centerspack in the
Truck same space.Each container Racksof
carrying integrates computing, servers Power
container netwerking, power, and supply
cooling systems.

http://spectrum.ieee.org/tech-talk/semiconductors/devices/what-will-the-data-center-of-the-future-look-like

. &zu'a,- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 36

IBM Roadrunner (2008)

First computer to reach the Petaflops (10'° flops)
Roadrunner runs on

- 6,948 dual-core AMD Opteron chips on IBM Model LS21 blade servers

-12,960 Cell engines (same as PS3) on IBM Model QS22 blade servers
With 80 terabytes of memory, the Roadrunner system and is housed in 288
IBM BladeCentre racks occupying 6,000 square feet.
10,000 connections, both - SRS -
Infiniband and gigabit
Ethernet, with 57 miles
of fiber-optic cable.

- UE Parallel alg. and prog.

2017-2018- 37

