
F. Desprez - UE Parallel alg. and prog. 2017-2018 - 1

Frédéric Desprez
INRIA

Parallel
Architectures

Some references

• Lecture “Calcul hautes performance – architectures et modèles de
programmation”, Françoise Roch, Observatoire des Sciences de l’Univers
de Grenoble Mesocentre CIMENT
• 4 visions about HPC - A chat, X. Vigouroux, Bull
• Parallel Programming – For Multicore and Cluster System, T. Rauber,
G. Rünger

2017-2018F. Desprez - UE Parallel alg. and prog. - 2

Lecture summary

• Introduction

• Models of parallel machines

• Multicores/GPU

• Interconnection networks

2017-2018F. Desprez - UE Parallel alg. and prog. - 3

MODELS OF PARALLEL
MACHINES

2017-2018F. Desprez - UE Parallel alg. and prog. - 4

Parallel architectures

2017-2018F. Desprez - UE Parallel alg. and prog. - 5

A generic parallel machine

2017-2018F. Desprez - UE Parallel alg. and prog. - 6

• Where is the memory?
• Is it connected directly to the processors?
• What is the processor connectivity?

Parallel machines models
Flynn’s classification

- Characterizes machines according to their flow of data and instructions

2017-2018F. Desprez - UE Parallel alg. and prog. - 7

Single
Instruction

Multiple
Instructions

Single
Data

Multiple
Data

SISD

SIMD

MISD

MIMD

Flynn, M., "Some Computer Organizations and Their Effectiveness". IEEE Trans. Comput. C-21: 948., 1972.

SISD: Single Instruction, Single Data stream
"Classical" sequential machines
Each operation is performed on one data at a time

UC = Control Unit (responsible for the sequencing of instructions)
UT = Processing Unit (performs the operations)
FI = Instructions Flow
UM = Memory Unit (contains instructions and data)
FD = Data Flow

Von Neuman’s model (1945)

2017-2018F. Desprez - UE Parallel alg. and prog. - 8

MISD: Multiple Instruction stream, Single Data
stream

Specialized "systolic" type machines
Processors arranged with a fixed topology
Strong synchronization

2017-2018F. Desprez - UE Parallel alg. and prog. - 9

SIMD: Single Instruction stream, Multiple Data
stream
Totally synchronized calculation units
Conditional execution with masking flag

• Machines adapted to very regular processing (matrix operations, FFT,
image processing)
• Not adapted at all to irregular operations

2017-2018F. Desprez - UE Parallel alg. and prog. - 10

Conditionals in SIMD

• Masking flag
• Used to prevent processors from performing some operations

2017-2018F. Desprez - UE Parallel alg. and prog. - 11

Some examples of SIMD machines

• 80’s/90’s parallel machines
• Illiac IV, MPP, DAC, Connection Machine CM-1/2, MasPar MP-1/2

• A great return today
• Intel processors and SSE / SSE-2 mode (vector units)
• 128-bit vector registers

• 16 floats (8 bits), 8 short integers (16 bits), 4 integers (32 bits)
• 2 floats (64 bits) for SSE-2

• Altivec (Velocity Engine, VMX)
• Co-processors

• GPGPU nVidia G80
• ClearSpeed array processor (2 control processors

+ 192 processors)

2017-2018F. Desprez - UE Parallel alg. and prog. - 12

MIMD: Multiple Instructions stream, multiple data
stream
Multi-Processor Machines
Each processor runs its own code asynchronously and independently
Two sub-classes

Shared memory Distributed memory

A mix between SIMD and MIMD: SPMD (Single Program, Multiple Data)

2017-2018F. Desprez - UE Parallel alg. and prog. - 13

SIMD vs MIMD
• SIMD Platforms

• Designed for specific applications
• Complicated (and long) design, no "on-shelf" processors
• Less equipment (one control unit)
• Need less memory for instructions (single program)
• Used heavily for current co-processors

• MIMD Platforms
• Works for a wide variety of applications
• Less expensive (components on shelf,
short design)

• Need more memory (OS and
program on each processor)

2017-2018F. Desprez - UE Parallel alg. and prog. - 14

Raina’s classification

Taking into account the address space

- SASM (Single Address space, Shared Memory)
Shared memory

- DADM (Distributed Address space, Distributed Memory)
Distributed memory, without access to remote data. The exchange of data
between processors is necessarily effected by passing messages, by
means of a communication network

- SADM (Single Address space, Distributed Memory)
Distributed memory, with global address space, possibly allowing access to
data located on other processors

2017-2018F. Desprez - UE Parallel alg. and prog. - 15

Raina’s classification, contd.
The type of memory access implemented

NORMA (No Remote Memory Access)
No means of access to remote data, requiring the message passing

UMA (Uniform Memory Access)
Symmetric access to memory, identical cost for all processors

NUMA (Non-Uniform Memory Access)
The access performance depends on the location of the data

CC-NUMA (Cache-Coherent NUMA)
Type of NUMA architecture integrating caches

OSMA (Operating System Memory Access)
The remote data accesses are managed by the operating system, which handles
page faults at the software level and handles remote copy/send requests

COMA (Cache Only Memory Access)
The local memories behave like caches, so that a data item has neither a proprietary
processor nor a determined location in memory

2017-2018F. Desprez - UE Parallel alg. and prog. - 16

Raina’s classification, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 17

MIMD

DADM SASM SADM

NORMA

Cray XTs
IBM BlueGene
SUN Constellation

UMA

Sequent Symmetry
CRAY X, Y, C
SGI Power Challenge

NUMA

CRAY T3D, E, F

CC-NUMA

Dash
Flash
SGI Origin
SGI NUMAflex

OSMA

Munin
Ivy
Koan
Myoan

COMA

DDM
KSR 1.2

Parallel Programming Models

The programming model consists of the languages and libraries that will allow to
have an abstraction of the machine

Control
- How is parallelism created (implicit or explicit)?
- What are the sequences between operations (synchronous or asynchronous)?

Data
- What are the private and shared data?
- How are these data accessed and / or communicated?

Synchronization
- What operations can be used to coordinate parallelism?
- What are atomic (indivisible) operations?

Cost
- How can we calculate the cost of each previous item?

2017-2018F. Desprez - UE Parallel alg. and prog. - 18

A simple example: the sum
A function f is applied to the elements of an array A and the sum

Questions
- Where is A? In a central memory? Distributed?
- What will be the work done by the processors?
- How will they coordinate themselves to achieve a single outcome?

å
-

=

1

0
])[(

n

i
iAf

A:

fA:
f

sum

A = data array
fA = f(A)
s = sum(fA)

s:

2017-2018F. Desprez - UE Parallel alg. and prog. - 19

Shared memory
The program is a set of control threads

• They can sometimes be created dynamically during execution in some
languages

• Each thread has its own private data set (local stack variables)
• Set of shared variables (static variables, shared blocks, global stack)
• Threads communicate by writing and reading shared variables
• They synchronize on shared variables

PnP1P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

2017-2018F. Desprez - UE Parallel alg. and prog. - 20

Parallelization strategy
Shared Memory strategy

- Small number of processors (p << n = size(A))
- Connected to a single central memory

Parallel decomposition
- Each evaluation and each partial sum is a task

Assign n / p numbers to each processor p
- Each of them calculates private results and a partial sum
- Gather the p local sums and calculate the total sum

Two classes of data
• Shared (logically)

• The n numbers, the global sum

• Private (logically)
• Local evaluations of functions

å
-

=

1

0
])[(

n

i
iAf

2017-2018F. Desprez - UE Parallel alg. and prog. - 21

Shared memory "code" for the computation of the
sum

Thread 1

for i = 0, n/2-1
s = s + f(A[i])

Thread 2

for i = n/2, n-1
s = s + f(A[i])

static int s = 0;

• What is the problem with this program?

• A race condition occurs when
• Two processors (or two threads) access the same variable (and

at least one of them performs a write)
• The accesses are competing (not synchronized) and they can

appear at the same time

fork(sum,a[0:n/2-1]);
sum(a[n/2,n-1]);

2017-2018F. Desprez - UE Parallel alg. and prog. - 22

• Suppose that A = [3,5], f(x) = x2 and s=0 at the start
• For the result to be correct we need to have s = 32 + 52 = 34 at the end

• But here it can be 34, 9, or 25

• Atomic operations are read and write
• We will not see a mixture of numbers but the operation + = is not atomic
• All computations take place in private registers

Shared memory "code" for the computation of the
sum, contd.

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25
0 0
9 25

259

3 5A= f (x) = x2

2017-2018F. Desprez - UE Parallel alg. and prog. - 23

Improved code for the sum

Thread 1

local_s1= 0
for i = 0, n/2-1

local_s1 = local_s1 + f(A[i])

s = s + local_s1

Thread 2

local_s2 = 0
for i = n/2, n-1

local_s2= local_s2 + f(A[i])

s = s +local_s2

static int s = 0;

• Since the addition is associative, one can change the order
• Most computations take place on private variables

- The frequency of sharing is also reduced, which can improve the speed
- But there is always competition for updating s
- It can be deleted with locks (only one thread can have a lock at one time,

the other waits)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

2017-2018F. Desprez - UE Parallel alg. and prog. - 24

Shared memory machine model
Processors are connected to a large shared memory

- Also known as Symmetric Multiprocessors (SMPs)
- SGI, Sun, HP, Intel, SMPs IBM
- Multicore processors (except that caches are shared)

Scalability issues for large numbers of processors
- Usually <= 32 processors

Advantage: Uniform memory access (Uniform Memory Access, UMA)
Access code: lower cost for caches compared to the main memory

P1

bus

$

Memory

P2

$

Pn

$

Note: $ = cache

shared $

2017-2018F. Desprez - UE Parallel alg. and prog. - 25

Extensibility Issues for Shared Memory Architectures

Why not put more processors (with larger memory)?
- Memory bus becomes a bottleneck
- Caches must remain consistent

Example: Parallel Spectral Transform Shallow Water Model (PSTSWM)
- Experimental results of Pat Worley (ORNL)
- Important core of atmospheric models

- 99% of the floating operations are additions or multiplications
- But the code uses data on all the memory with low re-use of the loaded data (bus
use and frequent shared memory)

- Experiments with sequential performance (a copy of the code running
independently by increasing the number of processors used)
- Normally the best case for shared memory: no sharing
- But the data do not all fit in the registers and caches

2017-2018F. Desprez - UE Parallel alg. and prog. - 26

Crédits: Pat Worley, ORNL

• Performance degradation is
a function of the number of
processors involved

• No data sharing between
codes so perfect
parallelism

• Code executed for 18
vertical levels with several
horizontal sizes

Scalability Issues for Shared Memory Architectures, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 27

Distributed Shared Memory
Memory is logically shared but physically distributed

- Any processor can access any address in memory
- The lines (or pages) of cache lines are exchanged in the machine

Example: SGI platforms
- Scalable to 512 nodes (SGI Altix (Columbia) @ NASA / Ames)

Problem
- Cache Coherence Protocols
- How to maintain consistency between copies of the same memory area

P1

Network

$

memory

P2

$

Pn

$

memory memory

The cache lines (or pages) must
be large enough to cushion the
overhead
è Locality of data critical for

performance
NUMA

2017-2018F. Desprez - UE Parallel alg. and prog. - 28

Programming model: message passing

The program consists of a set of named processes
• Generally at the start of the program
• No data sharing: a control thread and a local address space
• Data is partitioned between local processes

Processes communicate with explicit send / receive pairs
• Coordination is implicit in each communication event
• MPI (Message Passing Interface) is the most used API

PnP1P0

y = ..s ...

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

Send P1,s

Network

Receive Pn,s

2017-2018F. Desprez - UE Parallel alg. and prog. - 29

Compute s = A[1]+A[2] on each processor
° First possible solution - what can crash?

Processor 1
xlocal = A[1]
send xlocal, proc2
receive xremote, proc2
s = xlocal + xremote

Processor 2
xlocal = A[2]
receive xremote, proc1
send xlocal, proc1
s = xlocal + xremote

° Second possible solution

Processor 1
xlocal = A[1]
send xlocal, proc2
receive xremote, proc2
s = xlocal + xremote

Processor 2
xlocal = A[2]
send xlocal, proc1
receive xremote, proc1
s = xlocal + xremote

° If the send / receive behave like the telephone system?
° Like the surface mail system?

° What happens if we have more processors?

2017-2018F. Desprez - UE Parallel alg. and prog. - 30

Distributed memory
Examples

• Cray XT4, XT 5
• PC clusters (Berkeley NOW, Beowulf)

• Each processor has its own memory and cache, but can not access the
memory of others
• Each "node" has its own network interface (NI) for all communications and
synchronizations

Interconnection system

P0

Memory

NI

. . .

P1

Memory

NI Pn

Memory

NI

Beowulf (T. Sterling)

2017-2018F. Desprez - UE Parallel alg. and prog. - 31

2017-2018F. Desprez - UE Parallel alg. and prog. - 32

Google cluster 1997

2017-2018F. Desprez - UE Parallel alg. and prog. - 33

Google Data centers

• ~ 20 data centers containing more than one
million servers around the world
• 40 servers / rack

2017-2018F. Desprez - UE Parallel alg. and prog. - 34

http://opencompute.org/

2017-2018F. Desprez - UE Parallel alg. and prog. - 35

The Million-Server Data Center

http://spectrum.ieee.org/tech-talk/semiconductors/devices/what-will-the-data-center-of-the-future-look-like

2017-2018F. Desprez - UE Parallel alg. and prog. - 36

IBM Roadrunner (2008)
First computer to reach the Petaflops (1015 flops)
Roadrunner runs on

- 6,948 dual-core AMD Opteron chips on IBM Model LS21 blade servers
- 12,960 Cell engines (same as PS3) on IBM Model QS22 blade servers

With 80 terabytes of memory, the Roadrunner system and is housed in 288
IBM BladeCentre racks occupying 6,000 square feet.
10,000 connections, both
Infiniband and gigabit
Ethernet, with 57 miles
of fiber-optic cable.

2017-2018F. Desprez - UE Parallel alg. and prog. - 37

