
F. Desprez - UE Parallel alg. and prog. 2017-2018 - 1

Frédéric Desprez
INRIA

Performance
Evaluation

Some references

• Parallel Programming – For Multicore and Cluster System, T. Rauber,
G. Rünger

• Introduction to parallel Computing, 2nd Edition, A. Grama, A. Gupta,
G. Karypis, V. Kumar, Addison Wesley

2017-2018F. Desprez - UE Parallel alg. and prog. - 2

Measuring time
Before parallelizing a program, one must be able to know which part of a
program takes the most time in computation
• Three types of time to consider

• Wall time
• The time spent executing a program: the time spent between the beginning of
the execution and the end

• User time
• The time really used by the program
• It can be much lower than the wall time if the program has to wait a lot, for
example for system calls or data exchanges
• This lost time can give indications for optimizations

• System time
• Time not used by the program itself but by the operating system (memory
allocation, process management, disk access, ...)
• We try to keep it minimal

2017-2018F. Desprez - UE Parallel alg. and prog. - 3

Measuring time, contd.
• Unix time command: time ./executable

• Output example
real 3m13.535s

user 3m11.298s

sys 0m1.915s

• Measures the total time of the program
• For performance analysis, it is necessary to know the execution time of certain parts of the

program
• Methods dependent on programming languages or operating systems
• MPI: MPI_Wtime(), OpenMP: omp_get_wtime()

• Give the wall time between two function calls
• Application profiling

• If proper compilation, use gprof (gprof executable > prof.txt)
• List of all functions with their execution time, their total time percentage, number of calls
• Call tree

• Software timers
• PAPI

2017-2018F. Desprez - UE Parallel alg. and prog. - 4

Good Measurement Practices
• Choice of number of processors

• Depending on available resources
• Beware of physical topology

• Pay attention to the resolution of the clock
• Repeat experiments to understand variability

• Shared resources (processors, network)
• Placing jobs / threads on potentially different processors / cores

• Confidence Interval

2017-2018F. Desprez - UE Parallel alg. and prog. - 5

Need for analytical models of parallel programs

• A sequential program can be evaluated according to its given execution
time according to the size of its input data
• A parallel program has its time that depends on other elements

• Number of processors used
• Their relative speed
• The speed of communication between them
⇒ A parallel program can not be evaluated independently of these
elements

• Some intuitive measures
• The wall time obtained to solve a given problem on a given parallel
platform

• What is the gain obtained in speed with respect to the sequential time:
the acceleration (or speedup)

2017-2018F. Desprez - UE Parallel alg. and prog. - 6

Execution time

• Sequential execution time (Ts)
• It is the time spent between the beginning and the end of an execution
on a sequential node

• The parallel time (Tp)
• This is the time between the start of parallel execution and the time the last
processor finishes

• Warning!
• To compare, use the same processors!
• Take the data transfers into account if necessary

2017-2018F. Desprez - UE Parallel alg. and prog. - 7

Factors Affecting Performance

• The algorithm should be able to be parallelized!
• The volume of data to which it applies must be sufficiently large in
relation to the number of processors used
• Additional overhead due to synchronization and memory access conflicts
can reduce performance
• Load balancing between processors
• The use of parallel algorithms can increase the complexity of parallel
algorithms compared to sequential algorithms
• The distribution of data between multiple memory units can reduce
memory contention and improve the locality of the data, which can lead to
performance gains

2017-2018F. Desprez - UE Parallel alg. and prog. - 8

Overhead sources

• Interactions between processes
• A non-trivial parallel algorithm will require interactions between
processes during execution (synchronization, intermediate data
exchange)

• Communications are generally the most important sources of
performance loss

• Waiting time
• Because of many reasons like

• A load imbalance,
• synchronizations,
• the presence of sequential parts.

2017-2018F. Desprez - UE Parallel alg. and prog. - 9

Overhead sources

The fastest sequential algorithms for a given problem may prove to be
difficult / impossible to parallelize

• Using a parallel algorithm based on a sequential algorithm that is simpler to
parallelize (with a high degree of concurrency)

• Example: matrix product using Strassen or Winograd algorithms vs 3 loops

Difference between the number of operations between the best
sequential algorithm and the parallel algorithm

• Overhead in number of operations
• But a parallel algorithm based on the best sequential algorithm can still perform
more calculations than the sequential algorithm

• Example: Fast Fourier Transform (FFT)
• In the sequential version, the results of some computations can be reused
• In the parallel version, generated by different processors (thus performed several times
by different processors)

2017-2018F. Desprez - UE Parallel alg. and prog. - 10

Acceleration (speedup)

• What performance gain can be achieved by parallelizing an application
compared to its sequential implementation?
• The speedup is a measure that captures the relative benefit of solving a
problem in parallel
• The speedup S is the ratio of time to solve a problem on a single
processor over time to solve a problem on a parallel p processors
machine
• It generally ranges between 0 and p, where p is the number of processors

• Same type of processors between parallel and sequential execution
• One should (normally) take the best sequential algorithm to solve the
same problem
• Sometimes it is not known or its implementation makes it ineffective
• Then take the best implementable algorithm

2017-2018F. Desprez - UE Parallel alg. and prog. - 11

Superlinear speedup

• There are sometimes accelerations greater than p

• This happens when
• The work done by a sequential algorithm is superior to that of its
parallel version

• Exemple: search, algorithms in trees

• If the data enters the caches for the parallel version
• The performance of larger memory sizes is less important

2017-2018F. Desprez - UE Parallel alg. and prog. - 12

Efficiency

• Efficiency measures the fraction of time for which a processor is used in a
useful way

E = S/p

• An efficient system has an efficiency equal to 1
• In practice 0 ≤ E ≤ 1

2017-2018F. Desprez - UE Parallel alg. and prog. - 13

Scalability of parallel systems
• Extrapolate performance

• How to move from a small problem on a small system
• to a big problem on a larger configuration

• Examples: 3 algorithms to compute a n-point FFT on 64 processors

• Choosing this algorithm
depending of
configurations

2017-2018F. Desprez - UE Parallel alg. and prog. - 14

Scalable parallel systems

• Total overhead function To(Ts, p)
• Best sequential time Ts

• Number of processors p
• Efficiency

E = Ts / pTp = Ts / (To + Ts) = 1 / (1 + To / Ts)
• Often, we have To(Ts, p) / Ts < 1

• To grows in a sub-linear manner with respect to Ts

• In this case, the efficiency increases if the size of the problem
increases and if the number of processors is constant

• For such systems, it is possible to keep a constant efficiency by
• Increasing the size of the problem
• Increasing the number of processors proportionally

• Such systems are scalable

2017-2018F. Desprez - UE Parallel alg. and prog. - 15

To = pTp – Ts

Scalability of parallel programs

• In scientific papers we read observations such as

"We implemented an algorithm on the parallel machine X which obtained
an acceleration of 10.8 out of 12 processors with a problem size equal
to 100.”

• A dot on a curve!
- What happens if we have 100, 1000 processors?
- What happens if we have data of size 10, 1000?

2017-2018F. Desprez - UE Parallel alg. and prog. - 16

Scalability of parallel programs, contd.
• Three theoretical performance models

• T = N + N2 / P
• This algorithm splits N2 computations but also replicates N other
computations
• No other sources of additional cost

• T = (N + N2) / P + 100
• This algorithm splits all the computations and adds an additional cost of
100

• T = (N + N2) / P + 0.6 P2

• This algorithm splits all the computations and adds an additional cost of
0.6 P2

• All these algorithms have an acceleration of 10.8 on 12 processors for
N = 100 !

2017-2018F. Desprez - UE Parallel alg. and prog. - 17

Scalability of parallel programs, contd.
If we increase the number of processors for N = 100

2017-2018F. Desprez - UE Parallel alg. and prog. - 18

Scalability of parallel programs, contd.
If we increase the number of processors for N = 1000

2017-2018F. Desprez - UE Parallel alg. and prog. - 19

Scalability of parallel programs, contd.
• Adding n numbers on p processors
• Supposition: addition = communication = 1 time unit

Acceleration tends to saturate and efficiency decreases

2017-2018F. Desprez - UE Parallel alg. and prog. - 20

