Performance
Evaluation

Fredéric Desprez
INRIA

Binary exchange
2-D transpose
3-D transpose ----

4000 6000 8000 10000 12000 14000 16000 18000

n

&z'ub,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 1

Some references

 Parallel Programming — For Multicore and Cluster System, T. Rauber,
G. Runger

* Introduction to parallel Computing, 2" Edition, A. Grama, A. Gupta,
G. Karypis, V. Kumar, Addison Wesley

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-2

Measuring time

Before parallelizing a program, one must be able to know which part of a
program takes the most time in computation
* Three types of time to consider

* Wall time
* The time spent executing a program: the time spent between the beginning of
the execution and the end

*User time
* The time really used by the program
* It can be much lower than the wall time if the program has to wait a lot, for
example for system calls or data exchanges
* This lost time can give indications for optimizations

* System time
» Time not used by the program itself but by the operating system (memory
allocation, process management, disk access, ...)
* We try to keep it minimal

l &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-3

Measuring time, contd.

 Unix time command: time ./executable

» Output example
real 3ml3.535s
user 3mll.298s
sys O0ml.915s

» Measures the total time of the program
» For performance analysis, it is necessary to know the execution time of certain parts of the
program
» Methods dependent on programming languages or operating systems

« MPI: MPI_Wtime(), OpenMP: omp_get_wtime()
* Give the wall time between two function calls

» Application profiling
* If proper compilation, use gprof (gprof executable > prof.txt)
» List of all functions with their execution time, their total time percentage, number of calls
* Call tree
« Software timers
* PAPI

. &Z/ZJIG/- F. Desprez - UE Parallel alg. and prog. 2017-2018-4

Good Measurement Practices

» Choice of number of processors
* Depending on available resources
» Beware of physical topology
Pay attention to the resolution of the clock
Repeat experiments to understand variability
» Shared resources (processors, network)
* Placing jobs / threads on potentially different processors / cores

Confidence Interval

64

Algorithm 1
Algorithm 2

Algorithm 1
Algorithm 2

Scalability (Strong)
Scalability (Strong)

16 16

1 1 1 1 i 1 1
256 2048 4096 8192 16384 256 2048 4096 8192 16384
Processors Processors

2017-2018-5

. &z’ub,- F. Desprez - UE Parallel alg. and prog.

Need for analytical models of parallel programs

A sequential program can be evaluated according to its given execution
time according to the size of its input data

A parallel program has its time that depends on other elements
* Number of processors used
 Their relative speed

* The speed of communication between them

= A parallel program can not be evaluated independently of these
elements

« Some intuitive measures

* The wall time obtained to solve a given problem on a given parallel
platform

*\What is the gain obtained in speed with respect to the sequential time:
the acceleration (or speedup)

. &z'ub,- F. Desprez - UE Parallel alg. and prog. 2017-2018-6

Execution time

 Sequential execution time (T)

* |t is the time spent between the beginning and the end of an execution
on a sequential node

* The parallel time (T,)

* This is the time between the start of parallel execution and the time the last
processor finishes

 Warning!
* To compare, use the same processors!
* Take the data transfers into account if necessary

. &z’ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-7

Factors Affecting Performance

 The algorithm should be able to be parallelized!

» The volume of data to which it applies must be sufficiently large in
relation to the number of processors used

 Additional overhead due to synchronization and memory access conflicts
can reduce performance

 Load balancing between processors

* The use of parallel algorithms can increase the complexity of parallel
algorithms compared to sequential algorithms

 The distribution of data between multiple memory units can reduce
memory contention and improve the locality of the data, which can lead to
performance gains

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-8

Overhead sources

* Interactions between processes
A non-trivial parallel algorithm will require interactions between
processes during execution (synchronization, intermediate data
exchange)
« Communications are generally the most important sources of
performance loss

« Waiting time
* Because of many reasons like
A load imbalance,
 synchronizations,
* the presence of sequential parts.

. &Z’Z&la/— F. Desprez - UE Parallel alg. and prog. 2017-2018-9

Overhead sources

The fastest sequential algorithms for a given problem may prove to be

difficult / impossible to parallelize
» Using a parallel algorithm based on a sequential algorithm that is simpler to
parallelize (with a high degree of concurrency)
« Example: matrix product using Strassen or Winograd algorithms vs 3 loops

Difference between the number of operations between the best

sequential algorithm and the parallel algorithm
* Overhead in number of operations
 But a parallel algorithm based on the best sequential algorithm can still perform
more calculations than the sequential algorithm

« Example: Fast Fourier Transform (FFT)
* In the sequential version, the results of some computations can be reused
* In the parallel version, generated by different processors (thus performed several times
by different processors)

l &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-10

Acceleration (speedup)

* What performance gain can be achieved by parallelizing an application
compared to its sequential implementation?
» The speedup is a measure that captures the relative benefit of solving a
problem in parallel
* The speedup S is the ratio of time to solve a problem on a single
processor over time to solve a problem on a parallel p processors
machine
* It generally ranges between 0 and p, where p is the number of processors
« Same type of processors between parallel and sequential execution
* One should (normally) take the best sequential algorithm to solve the

same problem
» Sometimes it is not known or its implementation makes it ineffective
* Then take the best implementable algorithm

l &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 11

Superlinear speedup

» There are sometimes accelerations greater than p

* This happens when
* The work done by a sequential algorithm is superior to that of its
parallel version

Processing clement 0 _—""—""~__Processing clzment |

- Exemple: search, algorithms in trees O RO

* If the data enters the caches for the parallel version
* The performance of larger memory sizes is less important

l &Y/ZJIG/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 12

Efficiency

« Efficiency measures the fraction of time for which a processor is used in a
useful way

E=S/p

* An efficient system has an efficiency equal to 1
*In practice 0 <E <1

. &zub/- F. Desprez - UE Parallel alg. and prog. 2017-2018-13

Scalability of parallel systems

- Extrapolate performance
* How to move from a small problem on a small system
*to a big problem on a larger configuration
« Examples: 3 algorithms to compute a n-point FFT on 64 processors

« Choosing this algorithm : L
depending of b ’ -----

configurations

Binary exchange ——
2-D transpose -------
3-D transpose ----

| | | | | | | | |

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

F 7

. &z'ub/- F. Desprez - UE Parallel alg. and prog. 2017-2018- 14

Scalable parallel systems

» Total overhead function T (T, p) _
. . >0 To - pr - 7;
 Best sequential time T

* Number of processors p

Efficiency

E=T,/pT,=T/(To+T)=1/(1+T,/Ty)

Often, we have T (T, p)/ T, <1

* T, grows in a sub-linear manner with respect to T

*In this case, the efficiency increases if the size of the problem

increases and if the number of processors is constant

For such systems, it is possible to keep a constant efficiency by

* Increasing the size of the problem

* Increasing the number of processors proportionally
Such systems are scalable

. &z'ub,- F. Desprez - UE Parallel alg. and prog. 2017-2018- 15

Scalability of parallel programs

* In scientific papers we read observations such as

"We implemented an algorithm on the parallel machine X which obtained
an acceleration of 10.8 out of 12 processors with a problem size equal
to 100.”

« A dot on a curve!
- What happens if we have 100, 1000 processors?
- What happens if we have data of size 10, 10007

l &Y/ZJIG/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 16

Scalability of parallel programs, contd.

* Three theoretical performance models

cT=N+N2/P
* This algorithm splits N2 computations but also replicates N other
computations
* No other sources of additional cost

«T=(N+N2/P+ 100
* This algorithm splits all the computations and adds an additional cost of
100

«T=(N+N2/P+0.6 P
* This algorithm splits all the computations and adds an additional cost of
0.6 P2

 All these algorithms have an acceleration of 10.8 on 12 processors for
N =100

. &Z/ZJIG/- F. Desprez - UE Parallel alg. and prog. 2017-2018-17

Scalability of parallel programs, contd.

If we increase the number of processors for N = 100

N=100
lm 1 1] LI) ll L 1 L] LN B B | ll 1 1 L | BN R -
C Perfect Speedup —— :
; Algorithm 1 ----]
i Algorithm 2 ----- :
I Algorithm 3 - q
e 3
. : - :
= B i
? i i
8. I j
7
10 F 3
l L L L LA 1 1 ll L L L A1 1 1 ll :' L 1 | d N e B M
| 10 100 1000

Processors

2017-2018 -

18

Scalability of parallel programs, contd.

If we increase the number of processors for N = 1000

N=1000

lomo E 1 Ll lllllll L} 1 lllllll 1) lllllll] T rrirni
- Perfect Speedup ——
i Algorithm | ——-
i Algorithm2 -----

1000 f Algorthm3 —--- 2 =

Q 100 al
10 E
1 1 1 1 IlIIII 1 1 1 llllll 1 1 lllllll““ 1 1 | oy [|
| 10 L0O 1000 10000
Processors

2017-2018- 19

Scalability of parallel programs, contd.

« Adding n numbers on p processors
e Supposition: addition = communication = 1 time unit

n ”
TP = —+2 logp N .+ Linear
P 30 [
2 -
s " |l
— 15 n=
%—I—Zlogp s ol n=1%2
5F n =64
P 1 % 5 10 15 22 2 1 3 4

210g p —
1+-L-2n

Acceleration tends to saturate and efficiency decreases

. &zub/- F. Desprez - UE Parallel alg. and prog. 2017-2018 - 20

e View Adions Options ?
bimld [/ seading-.

MA_O
(node-15.lyon.grid5000.fr)

Number of LA: 7
Nurmber of SeD - 0

[FoReauet [Toua [ix [Averae |
[FraTime[o [por [sem [ssom |

DIET Platform Property

e s [[

Awrage

|

T T T
[G (LD

[[[T T
) [1 S || — | — | — i Trmmaers s [oeries
amalifin 0 I I 1 0 LT

i DIET Platform Property
Nb DIETRequest = 29 Request Property
MoofSeD = 30 > 676
DIET Requests Serior | apemen
Total | Max | Average
6654 5 267 ms 230463 ms.

Find Info

Total | Max_[Aversge
lm,]uzu.]svuzm

Toal [Max_ [Average
16153 In:m]ssssm

1006691 [sm [S3485m

Selve Info

Total | Max_[Average
Jdllxllzznallnﬂlm

Request Propenty
reqiD 13
Service |service14

SeD |paracild_1
EindTime |61
84 ms

SolveTime |18 ms
TotalTime |263 me
paracil4

Times ms)

(¥ vabues] graduation [/ Legend [Serice ¥

INVENTEURS DU MONDE NUMERIQUE

