
F. Desprez - UE Parallel alg. and prog. 2017-2018 - 1

Frédéric Desprez
INRIA
LIG
Corse team

UE Parallel Algorithms
and Programming

Contact
INRIA
Corse Team
LIG Laboratory
Minatec Campus

• Email
Frederic.Desprez@inria.fr

• Web page
fdesprez.github.io

• Team web page
https://team.inria.fr/corse/

• Web page of the UE
fdesprez.github.io/teaching/par-comput/

2017-2018F. Desprez - UE Parallel alg. and prog. - 2

General Organization
Schedule

• 30 hours
• 15 hours of lectures (F. Desprez, T. Ropars)
• 6h of tutorials (T. Ropars, J.-F. Méhaut, B. Videau)
• 12h of lab work (T. Ropars, J.-F. Méhaut, B. Videau)

Evaluation
• Short reports and a codes for lab work
• A final exam

2017-2018 - 3F. Desprez - UE Parallel alg. and prog.

Schedule
• 23/01/18 (3h lecture)

- Introduction to parallelism and code optimization
- Decomposition

• 31/01/18 (1h30 lecture, 1h30 tutorial)
- Parallel architectures,
- Classification

• 06/02/18 (1h30 lecture, 1h30 tutorial)
- Shared memory
- OpenMP

• 13/02/18 (1h30 lecture, 1h30 lab work)
- Collective communications,
- Algorithms

• /// Vacations ///
• 27/02/18 (3h lab work)

- OpenMP
• 06/03/18 (1h30 lecture, 1h30 tutorial)

- Parallel linear algebra,
- vector matrix product,
- Matrix matrix product on a ring

2017-2018F. Desprez - UE Parallel alg. and prog. - 4

• 13/03/18 (1h30 lecture, 1h30 lab work)
- Message passing,
- MPI

• 20/03/18 (1h30 lecture, 1h30 lab work)
- Algorithms on ring, contd.
- Matrix matrix product on a grid of

processors
• 27/03/17 (3h lab work)

- Message passing (MPI)
• 03/04/17 (1h30 lecture, 1h30 tutorial)

- Map Reduce
• 10/04/17 (1h30 lecture, 1h30 lab work)

- Performance evaluation

• Final exam (week of April 30th)

Some References
Parallel Programming – For Multicore and Cluster System

T. Rauber, G. Rünger

Parallel Algorithms

H. Casanova, A. Legrand, Y. Robert

Sourcebook of Parallel Computing
J.J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy,L. Torczon, A. White

Parallel Computer Architecture
D.E. Culler, J. Pal Singh

Advanced Parallel Architecture - Parallelism, Scalability, Programmability
K. Hwang

2017-2018F. Desprez - UE Parallel alg. and prog. - 5

Some References, contd.
Online courses

- Why parallel, why now, Dr Clay Breshears, Intel
- Applications of Parallel Computers, J. Demmel, U.C. Berkeley CS267
- Architecture et Système des Calculateurs Parallèles, F. Pellegrini, LaBRI

2017-2018F. Desprez - UE Parallel alg. and prog. - 6

INTRODUCTION

2017-2018F. Desprez - UE Parallel alg. and prog. - 7

Why a Lecture on Parallel Computing ?
• Because it's everywhere !

2017-2018F. Desprez - UE Parallel alg. and prog. - 8

Sunway Taihu light supercomputer iPad

Because We Need It!
• To

- Solve problems more rapidly
Execute more requests per second (example Google)
Enhance the response time of interactive applications (online games)

- Obtain better results for the same execution time
Model refinement (example Météo France)
Use more complex models (multi-physics)

- Work on problems of larger scales
Simulations, web page searches

• Parallelism
- To be able to accelerate an application by

Dividing this application in subtasks, and
Execute these subtasks on different compute units

- To succeed, we need to be able to
Find parallelism in the application
Find the best computation/communication ratio
To understand the behavior of the target platform

2017-2018F. Desprez - UE Parallel alg. and prog. - 9

What is it all about?
• High Performance Computing (HPC)

"How do we make computers compute bigger problems faster?”
• This field is both old and new, very diverse, complicated, interesting

• Two main issues
- How do we build faster/bigger computers?
- How do we write faster software for those computers?

• Several different perspectives, from practical to theoretical
- Computer Architecture
- Operating Systems
- Networks
- Programming Languages and Models
- Algorithms

2017-2018F. Desprez - UE Parallel alg. and prog. - 10

Performance measure units

2017-2018F. Desprez - UE Parallel alg. and prog. - 11

• HPC units
- Flop: floating point operation, generally in double precision
- Flop/s: floating point operations per second
- Bytes: data size (8 for a double precision number)

• Typical sizes millions, billions, trillions…
Mega Mflop/s = 106 flop/sec MByte = 220 = 1048576 ~ 106 Bytes
Giga Gflop/s = 109 flop/sec GByte = 230 ~ 109 Bytes
Tera Tflop/s = 1012 flop/sec TByte = 240 ~ 1012 Bytes
Peta Pflop/s = 1015 flop/sec PByte = 250 ~ 1015 Bytes
Exa Eflop/s = 1018 flop/sec EByte = 260 ~ 1018 Bytes
Zetta Zflop/s = 1021 flop/sec ZByte = 270 ~ 1021 Bytes
Yotta Yflop/s = 1024 flop/sec YByte = 280 ~ 1024 Bytes

• Today’s most powerful supercomputer ~ 93 Pflop/s (34 in
2014, 17 in 2013, 8.7 in 2012)

- Updated list twice a year: www.top500.org

Why Not Accelerate Sequential Processors?
• If we want to get a sequential machine at 1 Tflop/s/1 Tbyte

- Data should travel from memory to the CPU (distance r)
- To get a data item per cycle (1012 times per second) at the speed of light
(c = 299 792 458 m/s ≈ 3e8 m/s)

- Thus r < c/1012 = .3mm

• We need to put 1 Tera-Byte of data in 0.3 mm2

- Each word is located in ≈ 3 Angstroms2, the size of a small atom

• Impossible to get this using today’s technology

• Beware of the heat of such a processor!

2017-2018F. Desprez - UE Parallel alg. and prog. - 12

Density and Power Problems
• Concurrent programs are more
efficient from the energy point of
view

- Dynamic power is
proportional to V2fC

- Increasing frequency (f)
increases also voltage (V)

- Increasing the number
cores increases the capacity (C)
but linearly

- Saving power by lowering the
frequency

• Sequential processors waste electrical power
- Speculation, dynamic verification of dependences
- Finding parallelism

2017-2018F. Desprez - UE Parallel alg. and prog. - 13

4004
8008

8080

8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year
Po

w
er

 D
en

si
ty

 (W
/c

m
2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
SurfaceSource: Patrick Gelsinger,

Shenkar Bokar, Intelâ

Moore’s Law

2017-2018F. Desprez - UE Parallel alg. and prog. - 14

2X transistors/chip every 18 months
(60% increase per year)

Moore’s Law

Microprocessors have become
smaller, denser, and more
powerful

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density would double
roughly every 18 months

Source: Jack Dongarra

Moore’s Law, contd.
• In 1965, empirical reasoning based on a relation between
circuits complexity and time
• Law that was verified since then
• Increase due to several factors

- Processors’ complexity increase
• transistor density, size’s increase

- Adding functionalities
• internal caches,
• longer instructions buffers,
• several instructions per cycle,
• multithreading,
• pipelines depth,
• re-arrangement of instructions

2017-2018F. Desprez - UE Parallel alg. and prog. - 15

Processors’ Revolution

• Processors’ density still increases ~x2/2 years
• Clock speed remains roughly the same
• Number of cores increases
• Electrical power is stable

2017-2018F. Desprez - UE Parallel alg. and prog. - 16

“Free lunch is over”, Herb Sutter
• Clock speed will not double anymore …
• … but performance need to increase anyway because of applications’
needs!

• Some issues related to the increase
of clock’s speed

• Power consumption
• Heat Dissipation
• Leaks

• But also
- Physic limitation due to the speed of
light (signal propagation)

2017-2018F. Desprez - UE Parallel alg. and prog. - 17

The Free Lunch Is Over, A Fundamental Turn Toward Concurrency in Software, Herb Sutter,
Dr. Dobb's Journal, 30(3), March 2005. http://www.gotw.ca/publications/concurrency-ddj.htm

Stabilization to Come

2017-2018F. Desprez - UE Parallel alg. and prog. - 18

19

Processor-DRAM Difference (Latency)

µProc
60%/year

DRAM
7%/year

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Performance difference
Processor-Memory:
(50% increase per year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Goal: finding algorithms that minimize data transfers, not only computations

2017-2018F. Desprez - UE Parallel alg. and prog.

Data Load Problem
• Computation execution time does not depend only from processor’s
speed
• We have to take into account the data movement speed from memory to
the processor
• Memory access speed has only increased of ~10% per year

- Bottleneck that tends to increase

• System performance depend of the fraction of total memory that can be
stored in a cache

• Better performance for parallel units because
- Bigger aggregated caches
- Larger aggregated bandwidth
- Be careful with data locality!

2017-2018F. Desprez - UE Parallel alg. and prog. - 20

Data Load Problem, Contd.
• This problem exists also for large distributed architectures
(computational grids, clouds)
• Different scale but similar problem
• Communication: Internet

- Examples:
• Web pages stored in Google datacenters for indexing and search
• Genomic databases for bioinformatics applications

2017-2018F. Desprez - UE Parallel alg. and prog. - 21

Consequence

• The only way to increase performance is to increase the number of
computing elements working in parallel

• The data transfer cost argument still holds !
- You have to cope with the computation grain and communication grain ratio
- Do what it needs to have the computation volume be (really) larger than the
communication volume

2017-2018F. Desprez - UE Parallel alg. and prog. - 22

PARALLEL APPLICATIONS

2017-2018F. Desprez - UE Parallel alg. and prog. - 23

Some Examples of Parallel Applications
• Without computers, either

- We study problems on paper (theory)
- We build an instrument and we perform experimentations

• Limitations
- Too complicated

• Ex: modeling a Tsunami
- Too costly

• Ex: crash test of an airplane
- Too slow

• Ex: climate evolution, planet evolution
- Too dangerous

• Ex: nuclear experiments, drugs

• Using computer to simulate a phenomenon
- Based on physic rules and using numerical methods

2017-2018F. Desprez - UE Parallel alg. and prog. - 24

Some Complex Problems
• Science

- understanding matter from elementary particles to cosmology
- storm forecasting and climate prediction
- understanding biochemical processes of living organisms

• Engineering
- combustion and engine design
- computational fluid dynamics and airplane design
- earthquake and structural modeling
- pollution modeling and remediation planning
- molecular nanotechnology

• Business
- computational finance
- information retrieval
- data mining

• Defense
- nuclear weapons simulation — cryptology

2017-2018F. Desprez - UE Parallel alg. and prog. - 25

Growing Needs

Exponential growth of computation power needs
- Simulation is now the third pillar of science (with theory and experimentation)

Exponential growth of data volumes
- Data acquisition, analysis, and visualization improvement
- Storage and transport issues
- Collaborative tools
- Big data

2017-2018F. Desprez - UE Parallel alg. and prog. - 26

Animation
• Rendering is used to apply lights, textures, and shades over 3D models to
generate 2D images for a movie
• Massive use of parallel computing to generate the huge number of images
for a complete movie (24 images per second)
• Some examples

- 1995, Pixar, Toy Story: first movie created using computers (“renderfarm” 100 machines
dualprocs computers)

- 1999, Pixar, Toy Story 2: using a system with 1400 processors for a better image quality
- 2001, Pixar, Monster Inc.: 250 servers with 14 processors (3500 processors)
- 2009, Industrial Light and Magic, Transformers 2: render farm with 5700 cores

2017-2018F. Desprez - UE Parallel alg. and prog. - 27

Bioinformatics
• Large growth of computations thanks to the arrival of fast sequencing
instruments for DNA (including for humans)
• Celera corp.: whole genome shotgun algorithm

- Dividing the gene in small segments
- Finding the DNA sequences experimentaly
- Using a computer to construct the whole sequence by finding overlaps
- Huge number of comparisons

2017-2018F. Desprez - UE Parallel alg. and prog. - 28

Astrophysics
Exploring the evolution of galaxies, thermonuclear processes, working on
data coming telescopes
• Analysis of large volumes of data

- Data coming from “Sky surveys”
• Sloan Digital Sky Surveys, http://www.sdss.org/

- Analysis of these data to find new planets, understand the evolution of
galaxies

2017-2018F. Desprez - UE Parallel alg. and prog. - 29

Credit: The Sloan Digital Sky Survey.

Earthquake Simulation
Southern California Earthquake Center ShakeOut Simulation workgroup.
Simulation by Rob Graves, URS/SCEC.

2017-2018F. Desprez - UE Parallel alg. and prog. - 30

Ocean Circulation Simulation
Ocean Global Circulation Model for the Earth Simulator
Seasonal Variation of Ocean Temperature

http://www.vets.ucar.edu/vg/POP/index.shtml

2017-2018F. Desprez - UE Parallel alg. and prog. - 31

Ocean Circulation Simulation, Contd.
Development of a mathematical model for the circulation for the oceans of
the southern hemisphere

- Ocean divided into 4096 East-West regions, 1024 North-South regions, 12
layers in height (50*106 3D cells)

- One iteration of the model simulates the circulation of the ocean for 10 minutes:
• 30*109 floating point operations

- For one year of simulation:
• 52560 iterations

- Six years of simulation leads to 1016 operations !

2017-2018F. Desprez - UE Parallel alg. and prog. - 32

Climate Modeling

• Compute
(temperature, pressure, humidity, wind speed) = f(latitude, longitude, height, time)

• Approach
- Domain discretization (one measure point every 10 km)
- Execute one algorithm that predicts the time at t+1 as a function of the one at t

• Utilization
- Weather forecast
- Natural disasters prediction
- Evaluate climate changes
- Sports events

2017-2018F. Desprez - UE Parallel alg. and prog. - 33

Climate Modeling, Contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 34

Air Flow Computing
• Computing the air flows around a airplane wing
• Grid divided into small triangles: finite elements
• Refinement around some specific parts to be more accurate
• Domain decomposition

2017-2018F. Desprez - UE Parallel alg. and prog. - 35

Large Hadron Collider (LHC)
• Higher energy collisions are the key to further discoveries of more massive
particles (E=mc2)
• One particle predicted by theorists remains elusive: the Higgs boson
• The LHC is the most powerful instrument ever built to investigate elementary
particles

- beams of protons collision at an energy of 14 TeV with a 27 km circumference
instrument.

• Data
- 40 million collisions per second
- After filtering, 100 collisions of interest per second
- A Megabyte of data digitised for each collision = recording rate of 0.1 Gigabytes/s
- 1010 collisions recorded each year
- = 10 Petabytes/year of data

2017-2018 - 36F. Desprez - UE Parallel alg. and prog.

2017-2018F. Desprez - UE Parallel alg. and prog. - 37

Tier2 Centre
~1 TIPS

Online System

Offline Processor Farm

~20 TIPS

CERN Computer Centre

FermiLab ~4 TIPSFrance Regional
Centre

Italy Regional
Centre

Germany Regional
Centre

InstituteInstituteInstituteInstitute
~0.25TIPS

Physicist workstations

~100 MBytes/sec

~100 MBytes/sec

~622 Mbits/sec

~1 MBytes/sec

There is a “bunch crossing” every 25 nsecs.
There are 100 “triggers” per second
Each triggered event is ~1 MByte in size

Physicists work on analysis “channels”.
Each institute will have ~10 physicists working on one or more
channels; data for these channels should be cached by the
institute server

Physics data cache

~PBytes/sec

~622 Mbits/sec
or Air Freight (deprecated)

Tier2 Centre
~1 TIPS

Tier2 Centre
~1 TIPS

Tier2 Centre
~1 TIPS

Caltech
~1 TIPS

~622 Mbits/sec

Tier 0

Tier 1

Tier 2

Tier 4

1 TIPS is approximately 25,000
SpecInt95 equivalents

Credits: Harvey Newman, Caltech

WHAT IS PARALLELISM?

2017-2018F. Desprez - UE Parallel alg. and prog. - 38

What is Parallel Computing?

Being able to accelerate an application by
1. Dividing this application in sub-tasks
2. Execute these sub-tasks in parallel over different computation units

To succeed, we have to be able to
1. find parallelism in the application
2. find the appropriate computation/data exchange grain
3. get some knowledge of the target architecture to obtain an efficient

solution

2017-2018F. Desprez - UE Parallel alg. and prog. - 39

Parallelism
• Parallelism is used everywhere on a computer

- Input/output operations overlap
- Loading and preparing the next instructions while executing others
- Using different units at the same time (integer and floating point units, multiple
floating point units, graphical processing units)

- Multitasking, data-prefetching and computing,
- Horizontal multi-programming, VLIW (Very Long Instruction Word) processors

• In this lecture, we are going to study parallelism in the broad sense
(models, architectures, algorithmic) with a special focus on the use of
different units (processors, cores) for the computation

2017-2018F. Desprez - UE Parallel alg. and prog. - 40

One Glance of Parallelism
• Work of a construction worker building a wall

• Alone, he builds it row after row
- Slow!

2017-2018F. Desprez - UE Parallel alg. and prog. - 41

One Glance of Parallelism, Contd.
• Work of two construction workers (a et b) building a wall

• One brick after an other
- They interfere between each other to pick the bricks up and put them in place

2017-2018F. Desprez - UE Parallel alg. and prog. - 42

One Glance of Parallelism, Contd.
• Work of two construction workers (a et b) building a wall

• Each one gets one part of the wall to work on
• More efficient but

- b has a longer way to walk to fetch the bricks
- They still interfere between each other to pick the bricks up

• Other ways
- a works from right to left, b starts earlier but synchronization problems
- a throws the bricks to b when he fetches one for him

2017-2018F. Desprez - UE Parallel alg. and prog. - 43

One Glance of Parallelism, Contd.
• Some thoughts about this simple example

- Two construction workers are more efficient than a single one, but
- More work because of the interactions between the two construction workers

• In general
- To get a parallel application, it should be able to be decomposed into
independent sub-parts

- We should be able to organize the repartition of work
- Overhead due to the work repartition (fetching the bricks)
- Find the best parallel algorithm ...
- Maybe not the most efficient sequential one !

2017-2018F. Desprez - UE Parallel alg. and prog. - 44

What do we expect?
To get a good speed-up !

- Ideally, we expect to get a speedup of p over p processors!

Unfortunately, this is not often the case
• Sequential parts of the algorithm
• Overhead problems due to redundant computations, data transfers (memory,
disks, network)

Sometimes, the gain can be higher than p!
• This is called superlinear speed-up
• Thanks to different memory speeds (main memory vs caches), less
computations thanks to parallelism (searches in trees)

• Applications for which the sequential execution is impossible (infinite execution
time)

2017-2018F. Desprez - UE Parallel alg. and prog. - 45

Back to Computers
• Programs are usually designed to execute on sequential processors

- Unique Central Processing Unit (CPU)
- Application based on a sequence of instructions executed one after an other
- Only one instructions is executed at a given time

2017-2018F. Desprez - UE Parallel alg. and prog. - 46

PROBLEM

CPU

Instructions

IN I3 I2 I1

Parallelism
Under its simplest form, we use several resources to solve a problem

- Problem divided in several (possibly) independent parts
- Using several CPU

2017-2018F. Desprez - UE Parallel alg. and prog. - 47

PROBLEM

IN I3 I2 I1

CPU

CPU

CPU

CPU

What is a Parallel Machine ?
• A collection of computing elements able to communicate and cooperate in
order to solve large size problem more efficiently (i.e. in a shorter time)

• A collection of processing elements
• How many of them?
• How much computing power?
• What can they perform?
• What is the size of their memory?
• What is their organization?
• How are performed the input/output?

• … able to communicate …
• How are they connected?
• What can they exchange?
• What is their data exchange protocol?

2017-2018F. Desprez - UE Parallel alg. and prog. - 48

What is a Parallel Machine ? Contd.
• … and to cooperate …

• How do these computing elements synchronize themselves?
• What is their degree of autonomy?
• How are they seen by the operating system?

• … in order to solve large size problem more efficiently (i.e. in a
shorter time)

• What are the problems with lot of internal parallelism?
• What is the computation model used?
• What is the degree of specialization of the machines to a given problem?
• How should we choose the algorithms?
• What efficiency can be expected?
• How are these machines programmed?
• What languages are needed?
• How should parallelism be expressed?
• Is parallelism implicit or explicit?
• Is parallelism extraction automatic or manual?

2017-2018F. Desprez - UE Parallel alg. and prog. - 49

TOP 500 (November 2017)

2017-2018F. Desprez - UE Parallel alg. and prog. - 50

Site Vendor Computer Country Cores Rmax
[Pflops]

Rpeak
(Pflops)

Power
[MW]

1
National
Supercomputing
Center in Wuxi

NRCPC
Sunway TaihuLight
NRPC Sunway SW26010,
260C 1.45GHz

China 10,649,600 93.0 125.4 15.4

2
National University
of Defense
Technology

NUDT
Tianhe-2
NUDT TH-IVB-FEP, Xeon 12C 2.2GHz,
IntelXeon Phi

China 3,120,000 33.9 54.9 17.8

3
Swiss National
Supercomputing
Centre (CSCS)

Cray
Piz Daint
Cray XC50,
Xeon E5 12C 2.6GHz, Aries, NVIDIA Tesla P100

Switzerland 361,760 19.6 25.3 2.27

4
Japan Agency for
Marine-Earth
Science and
Technology

Exa-
Scaler

Gyoukou
ZettaScaler-2.2 HPC System, Xeon 16C
1.3GHz, IB-EDR, PEZY-SC2 700Mhz

Japan 19,860,000 19.1 28.2 1.35

5 Oak Ridge National
Laboratory Cray

Titan
Cray XK7,
Opteron 16C 2.2GHz, Gemini, NVIDIA K20x

USA 560,640 17.6 27.1 8.21

6
Lawrence
Livermore National
Laboratory

IBM
Sequoia
BlueGene/Q,
Power BQC 16C 1.6GHz, Custom

USA 1,572,864 17.2 20.1 7.89

7 Los Alamos NL /
Sandia NL Cray

Trinity
Cray XC40,
Intel Xeon Phi 7250 68C 1.4GHz, Aries

USA 979,968 14.1 23.9 3.84

8
Lawrence Berkeley
National Laboratory
/ NERSC

Cray
Cori
Cray XC40,
Intel Xeons Phi 7250 68C 1.4 GHz, Aries

USA 622,336 14.0 27.9 3.94

9
JCAHPC
Joint Center for
Advanced HPC

Fujitsu
Oakforest-PACS
PRIMERGY CX1640 M1,
Intel Xeons Phi 7250 68C 1.4 GHz, OmniPath

Japan 556,104 13.6 24.9 2.72

Sunway TaihuLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway (1st)

2017-2018F. Desprez - UE Parallel alg. and prog. - 51

• 10,649,600 cores
• 125,435.9 TFlop/s peak performance
• 93,014.6 TFlop/s obtained
• 1,310,720 GB memory
• 15,371.00 kW energy consumption
• Processor: Sunway SW26010 260C 1.45GHz (3.06 TFlop/s peak !)
• Interconnect: Sunway
• Operating system: Sunway RaiseOS 2.0.5

Piz Daint (2nd in nov. 2017, 3rd in June)

2017-2018F. Desprez - UE Parallel alg. and prog. - 52

• 321,760 cores
• 25,326 TFlop/s peak performance
• 19,600 TFlop/s obtained
• 2,270.00 kW energy consumption
• Processor: Intel Xeon E5-26xx (various), Nvidia Tesla P100
• Operating system: Linux

Titan - Cray XK7 , Opteron 6274 16C
2.200GHz, Cray Gemini interconnect, NVIDIA
K20x (5)
• 560640 cores
• Theoretical Peak (Rpeak): 27112.5 TFlop/s
• Linpack Performance (Rmax): 17590.0 TFlop/s
• http://www.olcf.ornl.gov/titan/

2017-2018F. Desprez - UE Parallel alg. and prog. - 53

Before using parallelism, optimize the codes!
• Some classical optimizations

• Instruction prefetching
• Instruction re-ordering
• Pipelined functional units
• Branch prediction
• Functional units allocation
• Hyperthreading

• On the other hand, this requires a complexification of
- the hardware (parallel functional units) and
- the software (compilers, operating systems, runtime systems) to support them

2017-2018F. Desprez - UE Parallel alg. and prog. - 54

FINDING PARALLELISM

2017-2018F. Desprez - UE Parallel alg. and prog. - 55

How to find parallelism?

• Starting from a sequential language?

• The application has an intrinsic parallelism
• The chosen programming language does not have a "parallel" extension
è The compiler, the operating system and / or the hardware must find a
way to discover the hidden parallelism!

• Correct behavior for some trivially parallel applications (parallelization of
simple nested loops for example)
• But in general, disappointing results and problems related to the
dynamicity (pointers in C for example)

2017-2018F. Desprez - UE Parallel alg. and prog. - 56

“Automatic” parallelism in today’s processors
• Parallelism a the bit level (BLP, Bit Level Parallelism)

- In floating point operations
• Instruction parallelism (ILP, Instruction Level Parallelism)

- Executing several instruction per clock cycle
- Super-scalar, VLIW, EPIC, ThLP (Thread level parallelism: multithreading)

• Parallelism of memory managers
- Overlapping memory accesses with computations (prefetch)
- Vector operations in parallel (A[*] ß 3×A[*])

• Parallelism at the system level
- Executing different tasks on different processors (or cores)
- fork [func1(), func2()], join [*]

• Limits to this “implicit” parallelism
- Intelligence level of processors and compilers
- Complexity of applications
- Number of elements in parallel

2017-2018F. Desprez - UE Parallel alg. and prog. - 57

Other approach: cooperation
The programmer and the compiler work together

• The application has an intrinsic parallelism
• The language has extensions to express parallelism
• The compiler will translate the program for multiple units

• The programmer gives advice to the compiler on the areas to be
optimized, what are the parallel loops, ...

• The compiler, starting from the information it possesses on the hardware
(size of the caches, number of parallel units, information about the
performances), will be able to generate an efficient code

2017-2018F. Desprez - UE Parallel alg. and prog. - 58

Pipelines
Dave Patterson’s example: 4 people who wash their laundry

washing (30 min) + drying (40 min) + folding (20 min) = 90 min

2017-2018F. Desprez - UE Parallel alg. and prog. - 59

A

B

C

D

6 PM 7 8 9
T
a
s
k
‘
s

O
r
d
e
r

Time

30 40 40 40 40 20

• In this example
• The sequential execution takes

4 * 90 min = 6 h
• The pipelined execution takes

30+4*40+20 = 3.5 h
• Bandwidth = loads/h
• BW = 4/6 l/h without pipeline
• BW = 4/3.5 l/h with pipeline
• BW <= 1.5 l/h with pipeline
• The pipeline improves the

bandwidth but not the latency
(90 min)

• The bandwidth is limited by the
slower stage

• Potential acceleration = number
of pipeline stages

Stages of the MIPS processor
Figure 3.4, Page 134 , CA:AQA 2e from Patterson & Hennessy

2017-2018F. Desprez - UE Parallel alg. and prog. - 60

Pipeline used by arithmetic units
– A floating point unit can have a latency of 10 cycles and a bandwidth of 1 cycle

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD

W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

SIMD: Single Instruction, Multiple Data

2017-2018F. Desprez - UE Parallel alg. and prog. - 61

+

• Scalar computation
• “classic” mode
• One operation produces

one result

• SIMD computation
• with SSE / SSE2
• SSE = streaming SIMD extensions
• one operation produces

multiple results

X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Credits: Alex Klimovitski & Dean Macri, Intel Corporation

SSE/SSE2 on Intel processor
• SSE2 data types: everything that can fit in 16 bytes, thus

• Instructions perform additions, multiplications, etc. in parallel over all the data
stored in these 16 bits registers

• Challenges
- Should be contiguous and aligned in memory
- Some instructions to move data from one part of a register to an other

• Similar to GPU, vector processors (but more simultaneous operations)

2017-2018F. Desprez - UE Parallel alg. and prog. - 62

16x bytes

4x floats

2x doubles

Special instructions and compilers
• In addition to the SIMD instructions, the processor may also have other
instructions

- multiply-add instruction (Fused Multiply-Add, FMA)
x = y + x*z

- The processor executes these instructions at the same frequency as a * or a +
• In theory compilers know these instructions

- When compiling, the compiler will re-arrange the instructions to get a good
scheduling instructions that will maximize the pipeline (FMA and SIMD)

- It uses mixtures of such instructions in internal loops
• In practice, the compiler needs help

- Taking compilation flags into account
- Re-arrange the code so that it finds easier the good "pipelines”
- Use special functions
- Writing in assembly code!

2017-2018F. Desprez - UE Parallel alg. and prog. - 63

ILP: superscalar approach

2017-2018F. Desprez - UE Parallel alg. and prog. - 64

1 2 3 4 5Scalar pipeline:

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

Scalar execution:

Superscalar pipeline: 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

Superscalar execution:

Scheduling at runtime multiple
instructions from a sequential
code

• Hardware
• detects dependences
• Manages resources

ILP: VLIW (Very Long Instruction Width)
• Parallelization of instructions at compile time
• Problems

• ISA VLIW between the different processors (with different sizes)
• The speed of cache/DRAM load main vary: scheduling problem

2017-2018F. Desprez - UE Parallel alg. and prog. - 65

4x VLIW pipeline:

VLIW execution:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

Numerous cores use 2-3x VLIW

Vector machines
• Goal : vector operations (data parallelism) without the need for parallel
programming

- Simple: A[*] ß B[*] x C[*]
- Scatter / gather: e.g. S ß sum (D[*])

• Two types of vector machines
- Pipelined vector
- Array vector

• In the 1970’s and 1980’s, all the
supercomputers were vector machines
CRAY, CDC, …

2017-2018F. Desprez - UE Parallel alg. and prog. - 66

Simple vector operation

2017-2018F. Desprez - UE Parallel alg. and prog. - 67

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

A[1] ß B[1]*C[1]
A[2] ß B[2]*C[2]
A[3] ß B[3]*C[3]
A[4] ß B[4]*C[4]
A[5] ß B[5]*C[5]
A[6] ß B[6]*C[6]

Pipelined vector operation: gather (sum)

2017-2018F. Desprez - UE Parallel alg. and prog. - 68

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

D[2] ß D[1] + D[2]
D[4] ß D[3] + D[4]

D[6] ß D[5] + D[6]
D[8] ß D[7] + D[8]

1 2 3 4 5
1 2 3 4 5

XXX
XXX

D[4] ß D[2] + D[4]

1 2 3 4
XXX

D[8] ß D[6] + D[8] 5

1 2 3D[8] ß D[4] + D[8]

XXX
XXX

XXX

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4

XXX

ONE EXAMPLE: MATRIX
PRODUCT OPTIMIZED IN
SEQUENTIAL

2017-2018F. Desprez - UE Parallel alg. and prog. - 69

Credits: J. Demmel and K. Yelick, Berkeley

Motivation
• Most applications run at less than 10% of a processor's peak performance
• Most losses are on a processor only

- Execution of the code with performances of 10 to 20% of peak performance
- Other losses are due to communications

• The loss of performance is due to the management of the data in memory
- Moving data is more expensive than arithmetic operations and connections

• Purpose of this section
- Understanding how algorithms behave

2017-2018F. Desprez - UE Parallel alg. and prog. - 70

Idealized sequential machine model
• Integers, floats, pointers, arrays stored as bytes
• Operations

- Reading and writing to fast memories (registers)
- Arithmetic and logical operations on these registers

• Order specified by the program
- Read the most recent written data
- Compilers and the architecture translate expressions into lower-level
instructions

- The hardware executes the instructions in the order specified by the compiler
• Idealized cost

- Each operation has the same cost (reading, writing, adding, multiplying, etc.)

2017-2018F. Desprez - UE Parallel alg. and prog. - 71

A = B + C Þ

Read address(B) to R1
Read address(C) to R2
R3 = R1 + R2
Write R3 to address(A)

Real sequential processors
• Real processors have

- Registers and caches
• Quick and small data areas
• Store recently used data or close
• Different memory operations can have very different costs

- Parallelism
• Several functional units that run in parallel
• Different orders, mixes of instructions with different costs

- Pipelines
• Why is this our problem?

- In theory, compilers and hardware understand the architecture and how it
works to optimize the program

- In practice, this is false
- They do not know the algorithm that will derive greater benefit from the
processor

2017-2018F. Desprez - UE Parallel alg. and prog. - 72

Memory hierarchy
• Most programs have a strong locality in their access to data

- Spatial locality: access data close to previous accesses
- Time locality: re-use data that was previously accessed

• Memory hierarchies try to exploit locality to improve performance

2017-2018F. Desprez - UE Parallel alg. and prog. - 73

Speed 1ns 10ns 100ns 10ms 10sec

Size Ko Mo Go To Po

on-chip
cacheregisters

datapath

control

Processor

Second
level

cache
(SRAM)

Main
memory
(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

Approaches to support memory latency
• Bandwidth increased faster than latency decreased

- 23% per year vs. 7% per year
• Some techniques

- Eliminate operations by saving data in small (but fast, caches) memories and
re-using them
• Adding some time locality in the programs

- Use bandwidth better by retrieving a piece of memory and saving it to a cache
and using the entire block
• Adding some spatial locality in programs

- Use bandwidth better by allowing the processor to perform multiple reads at the
same time
• Competition in instruction flow (loading an entire array in vector processors, prefetching)

- Computation/memory operation overlap
• Prefetching

2017-2018F. Desprez - UE Parallel alg. and prog. - 74

Caches bases
• Cache: fast (and expensive) memory that keeps copies of data in main memory
(hidden management to the user)

- Simple example: a data item at address xxxxx1101 is stored in the cache at address
1101

• Cache hit: access to data in cache, inexpensive
• Cache miss: access to a data item not in cache, expensive

- Need to access the upper level (slower)
• Length of a cache line: number of bytes loaded at the same time
• Associativity

- Direct-mapping: only one address (line)
• The data stored at the address xxxxx1101 is stored at address 1101 of the cache, in a 16-word cache

- N-way: n ≥ 2 lines with different addresses can be stored
• Up to n ≤ 16 words with addresses xxxxx1101 can be stored at address 1101 of the cache (cache
can store 16n words)

• Hierarchical caches with decreasing speeds and increasing sizes
- In processors and outside

2017-2018F. Desprez - UE Parallel alg. and prog. - 75

Why having multiple cache levels?
• On-chip vs off-chip

- Internal caches are faster but limited in size

• Large size caches are slower
- Hardware takes longer to check for longer addresses
- Associativity, which allows for larger sets of data, has a cost

• Some examples
- Cray deleted a cache to speed up certain accesses on the T3E
- IBM (Power 5 and 6) uses a cache called "victim cache" that is less expensive

• There are other levels of memory hierarchy
- Registers, pages (TLB, virtual memory), …
- And not always hierarchical

2017-2018F. Desprez - UE Parallel alg. and prog. - 76

Cache modeling
• Microbenchmarks available (membench, stanza triad)

- Works well enough for simple and non-hierarchical caches
- Complicated for new generations of processors (not to mention the influence of
the operating system)

2017-2018F. Desprez - UE Parallel alg. and prog. - 77

What lessons can be learned?

• The actual performance of a program may be difficult to understand
depending on the architecture

- The slightest modification of the architecture and the program has a big
influence on the performance

- To write efficient programs, one must take into account the architecture
• True for sequential and parallel processors

- One would like simple models to design efficient algorithms

• Consider caches in the program
- Use a divide-and-conquer algorithm so that the data is ideally placed in the L1
and L2 caches

2017-2018F. Desprez - UE Parallel alg. and prog. - 78

Matrix product
• An important kernel of several numerical applications

- Appears in most linear algebra algorithms

• Bottleneck of many applications

- Other applications: graph algorithms, neural networks, image processing, ...

• Optimizations can be used for other applications

• Quite easy to optimize

• The most studied algorithm in the world of HPC

2017-2018F. Desprez - UE Parallel alg. and prog. - 79

Impact of these optimizations

2017-2018F. Desprez - UE Parallel alg. and prog. - 80

Matrix product’s speed for NxN matrices over a Sun Ultra-1/170, peak = 330 MFlops

Data storage
• A matrix is a 2D array but the memory is rather 1D
• Storage conventions

- By columns (by default in Fortran): A(i,j) à A+i+j*n
- By rows (by default in C): A(i,j) at A+i*n+j
- Recursive

2017-2018F. Desprez - UE Parallel alg. and prog. - 81

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

0
4
8
12
16

1
5
9
13
17

2
6
10
14
18

3
7
11
15
19

By columns By rows

Cache lines The green row is stored in red
cache lines

Memory storage by column

Simple memory model to optimize
• We assume two levels of memory in the hierarchy, fast and slow
• Initially all data is in the slow memory (main memory)

- m : number of memory (words) exchanged between fast memory and slow
memory

- tm: time per operations in slow memory
- f : number of arithmetic operations
- tf : time per arithmetic operation << tm
- q : average number of flops per access to slow memory

• Minimal execution time when all data are in fast memory:

• Effective Time
- f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

• A larger q leads to a time closer to the minimum
- q ³ tm/tf mandatory to obtain at least one half of the peak performance

2017-2018F. Desprez - UE Parallel alg. and prog. - 82

Computational
intensity: very important
for algorithm efficiency

Balance of the machine:
key for the efficiency of

the computer

Matrix-vector product

2017-2018F. Desprez - UE Parallel alg. and prog. - 83

// y = y + A*x
for i = 1:n

for j = 1:n
y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

Matrix-vector product

2017-2018F. Desprez - UE Parallel alg. and prog. - 84

read x(1:n) in fast memory
read y(1:n) in fast memory
for i = 1:n

read line i of A in fast memory
for j = 1:n

y(i) = y(i) + A(i,j)*x(j)
write y(1:n) in main memory

• m = number of references to slow memory = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m » 2

Matrix-vector multiplication limited by the speed of the
main memory

Modeling the matrix-vector product

2017-2018F. Desprez - UE Parallel alg. and prog. - 85

• Execution time for a NxN = 1000x1000 matrix
• Time

f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)
= 2*n2 * tf * (1 + tm/tf * 1/2)

• For tf and tm, data from the R. Vuduc PhD thesis (pp 351-3)
• For tm we use the min memory latency min / word per cache line

Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6.3
Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

Mem Lat (Min,Max)
cycles

Machine
balance
(q has to be
at least
equal to this
value to
obtain
½ of peak
performance)

http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

Simplifying assumptions
• What simplifications have been made?

- We have ignored the parallelism in the processor between memory access and
arithmetic operations
• Sometimes we forget the arithmetic terms in this type of analysis

- It was assumed that the fast memory could store 3 vectors
• Reasonable if we talk about memory caches
• False if one has registers (~ 32 words)

- It was assumed that the cost of a fast memory access was 0
• Reasonable when using registers
• Not really just if you use a memory cache (1-2 cycles for L1)

- Memory latency was assumed to be constant

• We can simplify even more by ignoring the memory operations in the
vectors X and Y

- Speed in Mflops /element = 2 / (2* tf + tm)

2017-2018F. Desprez - UE Parallel alg. and prog. - 86

Model validation
• Can this model be used to predict performances ?

- DGEMV operation: optimized for target platforms
• Model accurate enough to compare machines
• But not accurate enough for the latest processors because of latency

estimates

2017-2018F. Desprez - UE Parallel alg. and prog. - 87

0

200

400

600

800

1000

1200

1400

Ultra 2i Ultra 3 Pentium 3 Pentium3M Power3 Power4 Itanium1 Itanium2

M
Fl
op
/s

Predicted MFLOP
(ignoring x,y)
Pre DGEMV Mflops
(with x,y)
Actual DGEMV
(MFLOPS)

Naive matrix multiplication

2017-2018F. Desprez - UE Parallel alg. and prog. - 88

// implements C = C + A*B
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

The algorithm has 2*n3 = O(n3) Flops and works on 3*n2 memory
words

q potentially big as 2*n3 / 3*n2 = O(n)

Naive matrix multiplication, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 89

// implements C = C + A*B
for i = 1 to n

read row I of A in fast memory
for j = 1 to n

read C(i,j) in fast memory
read colum j of B in fast memory
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
write C(i,j) in main memory

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Naive matrix multiplication, contd.

2017-2018F. Desprez - UE Parallel alg. and prog. - 90

Number of slow memory references for a multiplication of matrices without blocks
m = n3 to read each column of B n times

+ n2 to read each row of A once
+ 2n2 to read and write each element of C once
= n3 + 3n2

Then q = f / m = 2n3 / (n3 + 3n2)
» 2 when n is big, no improvement compared to the matrix-vector product

The two internal loops are matrix-vector products of line i of A times B
Same if we exchange the 3 loops

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Performances of the naive matrix multiplication

2017-2018F. Desprez - UE Parallel alg. and prog. - 91

Speed of a NxN matrix product on a Sun Ultra-1/170, peak performance = 330 MFlops

Naive matrix multiplication on RS/6000

-1

0

1

2

3

4

5

6

0 1 2 3 4 5

lo
g

cy
cl

es
/fl

op

Log of problem size

T = N4.7

Performances in O(N3) with a number of cycle/flop constant
Performance is more like O(N4.7)

Size 2000 will take 5 days

12000 will take
1095 years

Slide source: Larry Carter, UCSD

2017-2018F. Desprez - UE Parallel alg. and prog. - 92

93

Naive matrix multiplication on RS/6000, contd.

0

1

2

3

4

5

6

0 1 2 3 4 5

lo
g

cy
cl

es
/fl

op

log of problem size

Page miss every iterations

TLB miss every
iterations

Cache miss every
16 iterations Page miss every 512 iterations

2017-2018F. Desprez - UE Parallel alg. and prog.

Slide source: Larry Carter, UCSD

Block partitioned matrix product

2017-2018F. Desprez - UE Parallel alg. and prog. - 94

A,B,C matrices of size nxn partionned into sub-blocks of size bxb where
b=n / N is called the block size

for i = 1 to N
for j = 1 to N

read block C(i,j) in fast memory
for k = 1 to N

read block A(i,k) in fast memory
read block B(k,j) in fast memory
C(i,j) = C(i,j) + A(i,k) * B(k,j) {matrix product over blocks}

write block C(i,j) in main memory

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Block partitioned matrix product, contd
Recall:

m is the volume of memory traffic between the fast memory and the slow (main)
memory

The matrix has nxn elements, and NxN blocks of size bxb
f is the number of floating operations, 2n3 for the matrix product
q = f / m is our measure of algorithm efficiency in the memory system

Then:
• m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)
• + N*n2 read each block of A N3 times
• + 2n2 read and write each block of C once
• = (2N + 2) * n2

• Then the computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
» n / N = b for large n

• The performance can be improved by increasing the size of the blocks b
• Can be much faster than the matrix-vector product (q = 2)

2017-2018F. Desprez - UE Parallel alg. and prog. - 95

Analysis to understand algorithms
• The block algorithm has a computational intensity q » b
• The larger the block size, the more efficient our algorithm
• Limit: All blocks of A, B, and C must be able to hold in fast memory (cache)
• If we assume that our fast memory has a size Mfast

3b2 £ Mfast, then q » b £ (Mfast/3)1/2

2017-2018F. Desprez - UE Parallel alg. and prog. - 96

required
t_m/t_f KB

Ultra 2i 24.8 14.8
Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4
Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5.5 0.7

• To construct a machine for executing a
matrix product at ½ of the peak
performance, we need a fast memory of
size

Mfast ³ 3b2 » 3q2 = 3(tm/tf)2

• This size is reasonable for an L1 cache but
not for register sets

• Note: this analysis assumes that it is
possible to schedule the instructions
perfectly

Limitations on optimization of the matrix product

2017-2018F. Desprez - UE Parallel alg. and prog. - 97

• The block algorithm changes the order in which values are accumulated
on each C [I, j] by applying commutativity and associativity

• The previous analysis has shown that the block algorithm has a
computational intensity of

q » b £ (Mfast/3)1/2

• There is a lower bound which says that one can not do better than this
bound (using only associativity)

• Theorem (Hong & Kung, 1981): Any reorganization of this algorithm
(which uses only associativity) is limited to

q = O((Mfast)1/2)

I/O complexity: The red-blue pebble game, J.W. Hong, H.T. Kung, STOC, ACM Press, pp: 326-333, (1981)

Basic Linear Algebra (BLAS)

2017-2018F. Desprez - UE Parallel alg. and prog. - 98

• Standard interface
• www.netlib.org/blas, www.netlib.org/blas/blast--forum

• Machine vendors, optimized implementations
• History

• BLAS1 (1970’s):
• Vector operations: dot product, saxpy (y=a*x+y), etc
• m=2*n, f=2*n, q ~1 or less

• BLAS2 (middle of 1980’s)
• Matrix-vector operations: matrix-vector product, etc
• m=n^2, f=2*n^2, q~2, less overhead
• Faster than BLAS1

• BLAS3 (en of 1980’s)
• Matrix-matrux operations: product, etc
• m <= 3n^2, f=O(n^3), then q=f/m can reach n

Then BLAS3 are potentially faster than BLAS2 operations
• Best algorithms use BLAS3 operations when possible (LAPACK &

ScaLAPACK) www.netlib.org/{lapack,scalapack}

BLAS on IBM RS6000/590

2017-2018F. Desprez - UE Parallel alg. and prog. - 99

BLAS 3

BLAS 2
BLAS 1

BLAS 3 (nxn matrix product) vs BLAS 2 (nxn matrix-vector product) vs BLAS 1
(saxpy of n vectors)

Peak performance = 266 Mflops

Peak

Dense linear algebra: BLAS2 vs BLAS3

2017-2018F. Desprez - UE Parallel alg. and prog. - 100

• BLAS2 and BLAS3 have very different computational intensities and
therefore very different performances

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

0
100
200
300
400
500
600
700
800
900

1000

AMD A
thl

on
-600

DEC ev
56

-53
3

DEC ev6
-500

HP900
0/73

5/13
5

IB
M P

PC604
-11

2

IBM Power2
-16

0

IB
M P

ow
er3-200

Penti
um

 P
ro-

20
0

Pen
tiu

m II-
26

6

Pen
tiu

m III
-55

0

SGI R
100

00
ip2

8-2
00

SGI R
12

00
0ip

30
-27

0

M
Fl

op
/s DGEMM

DGEMV

Source: Jack Dongarra

Recursion: cache oblivious algorithms
• The block algorithm requires finding a good block size
• The cache oblivious algorithms represent an alternative
• Treat a nxn matrix product as a set of smaller problems that may fit into the
caches
• Case for A (nxm) * B (mxp)

• Case 1: m>= max{n,p}: split A horizontally
• Case 2 : n>= max{m,p}: split A vertically et B horizontally
• Case 3 : p>= max{m,n}: split B vertically

÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ
BA
BA

B
A
A

2

1

2

1

() ()2121 ,, BABABBA =

Case 1

Case 3

Case 2

2017-2018F. Desprez - UE Parallélisme - 101F. Desprez - UE Parallel alg. and prog.

Storage of recursive data
• A related idea is to use a recursive structure for the matrix

- Improves the locality of the data with a data structure independent of the machine
- Can minimize latency with multiple levels of memory hierarchy

• There are several recursive decompositions in the order of the subblocks
• The figure shows the Z-Morton arrangement ("space filling curve")
• Search for articles on "cache oblivious algorithms" and "recursive layouts"

Advantages
• Recursive storage works pretty well with all

cache sizes

Drawbacks
• The calculation of the indexes to find A [i, j]

is expensive

2017-2018F. Desprez - UE Parallel alg. and prog. - 102

Automatic tuning of linear algebra kernel libraries

• An ideal world
- Write numerical codes to Matlab and get performance close to peak performance

• The Sad Reality
- The best algorithms depend on the target architectures and compilers used
- Development "by hand" of codes optimized for a given application and for a given

architecture
- Difficult to understand and model the behavior of architectures and compilers

• Can we automate the generation of high-performance codes according to the
target architectures?

- A program is left to generate a large number of code variations and one takes the
most efficient

2017-2018F. Desprez - UE Parallel alg. and prog. - 103

Some examples
• Dense BLAS

- Sequential

- PHiPAC (UCB), then ATLAS (UTK)

- Now in Matlab, several other versions

- math-atlas.sourceforge.net/

• Fast Fourier Transform (FFT) & its variations
- FFTW (MIT)

- Both sequential and parallel

- 1999 Wilkinson Software Prize

- www.fftw.org

• Digital Signal Processing
- SPIRAL: www.spiral.net (CMU)

• Collective communication operations in MPI (UCB, UTK)

2017-2018F. Desprez - UE Parallel alg. and prog. - 104

PHiPAC (Berkeley)

2017-2018F. Desprez - UE Parallel alg. and prog. - 105

ATLAS (UTK)

2017-2018F. Desprez - UE Parallel alg. and prog. - 106

How does it work?
• What do BLAS, FFT, signal processing, reductions have in common?

- One can perform the off-line tuning: once per architecture
- We can take the time we want (hours, weeks ...)
- At run time, the choice of algorithm depends only on a few parameters

• Matrix sizes, FFT size, ...

• Computation of block size for registers in the matrix product

2017-2018F. Desprez - UE Parallel alg. and prog. - 107

m

=.n

k

k

n

m

n0

k0

k0

m0 n0

m0

Computation of the block size for the matrix product

2017-2018F. Desprez - UE Parallel alg. and prog. - 108

333 MHz Sun Ultra 2i

2-D section of a 3-D
space;

Color-coded
implementations of
performance in Mflop/s

16 registers, but 2x3 tile
faster

Optimizations
• Use block algorithms for registers

- Loop unrolling, using named "registers" variables
• Use block algorithms for multi-level caches
• Harness the fine grain parallelism of processors

- Superscalar instructions; pipelines
• Complex interactions with compilers

• Several projects on the subject
- ParLab: parlab.eecs.berkeley.edu
- BeBOP: bebop.cs.berkeley.edu
- PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
- ATLAS: www.netlib.org/atlas
- BOAST

2017-2018F. Desprez - UE Parallel alg. and prog. - 109

CONCLUSIONS

2017-2018F. Desprez - UE Parallel alg. and prog. - 110

Parallel machines today

2017-2018F. Desprez - UE Parallel alg. and prog. - 111

https://computing.llnl.gov/tutorials/bgp/images/bgpScalingArch.gif

Getting performance on these machines
• In general, we only talk about computing power
• But it is also necessary to take into account the memory bandwidth and
the latency

- It is necessary to be able to fill the speed of the processor (s)
- Hierarchical memory and caches

• The I / O bandwidth to the drives grows linearly with the number of
processors

2017-2018F. Desprez - UE Parallel alg. and prog. - 112

113

Improve real performance
Peak performance increases exponentially
● In 1990's, peak performance was increased

100x;
● In the years 2000, they will increase

1000x

But the efficiency (performance related to
peak performance)
● 40-50% on vector supercomputers of the

1990s
● Now close to 5-10% on today's

supercomputers
Reduce the gap ...
● Algorithms that obtain performance on a single processor and are

extensible over several thousand
● More efficient programming models and tools for massively parallel

machines

0.1

1

10

100

1,000

2000 2004

Te
ra

flo
ps

1996

Performance
Gap

Peak Performance

Real Performance

2017-2018F. Desprez - UE Parallel alg. and prog.

Parallelism in 2017
• All processor vendors produce multicore processors

- All machines will soon be parallel
- To continue to double the power it is necessary to double the parallelism

• New processor architectures start to show up in HPC platforms
- FPGA, low power consumption processors

• What applications will (well) benefit from parallelism?
- Will they have to be redeveloped from scratch?

• Will all programmers have to be parallel machine programmers?
- New software models are needed
- Try to hide the parallelism to the maximum
- Understand it!

• The industry is betting on these changes ...
• ... but still a lot of work to do

2017-2018F. Desprez - UE Parallel alg. and prog. - 114

are

Challenges to be taken
• Parallel applications are often very sophisticated

- Adaptive algorithms that require dynamic balancing
• Multi-level parallelism is difficult to manage

- Massive use of task graph parallelism in modern numerical applications
• The size of the new machines gives problems of efficiency

- Scalability Issues
- Serialization and load imbalance
- Bottlenecks in communications and/or input/output
- Inefficient or no sufficient parallelization
- Faults and/or breakdowns
- Energy management

• Difficulty in getting the best performance on the nodes themselves
- Contention for shared memory
- Utilization of the memory hierarchy multicore processors
- Influence of the operating system

2017-2018F. Desprez - UE Parallel alg. and prog. - 115

Conclusions
• The set of parallel machines consists of a (very) large set of
elements

- from parallel units in processors
- up to data centers connected worldwide

• Field of study of parallelism
- Architectures
- Algorithms
- Software, compilers,
- Libraries
- Environments

• Significant historical changes
- Until the 1990s, reserved for large simulation calculations
- Today, parallelism in all processors (from smartphones to supercomputers),
parallelism in everyday life (iPad, Google!)

2017-2018F. Desprez - UE Parallel alg. and prog. - 116

