
Parallel Algorithms and Programming
Fault tolerance for Parallel Applications

Thomas Ropars

thomas.ropars@unvi-grenoble-alpes.fr

2018

1

mailto:thomas.ropars@unvi-grenoble-alpes.fr

Agenda

About failures in large scale systems

The basic problem

Checkpoint-based protocols

Log-based protocols

Recent contributions

Alternatives to rollback-recovery

2

Murphy’s law

Whatever can go wrong will go wrong at the worst possible
time and in the worst possible way.

3

Agenda

About failures in large scale systems

The basic problem

Checkpoint-based protocols

Log-based protocols

Recent contributions

Alternatives to rollback-recovery

4

Mean Time Between Failures

Any component in a computing system may fail:

• This probability can be expressed as a function of the Mean
Time Between Failure (MTBF)

Example: MTBF of a disk

Typical MTBF of a disk range between 30 and 120 years (source:
seagate)

• Does this mean that my disk can run for 30 years without
failures?

I No, this MTBF does not take into account aging
I This number corresponds to the MTBF during normal life

(e.g., 3 years)
• Testing 1000 disks during 6 months, we observe that only 6

fail → MTBF of 83 years

5

Mean Time Between Failures

Any component in a computing system may fail:

• This probability can be expressed as a function of the Mean
Time Between Failure (MTBF)

Example: MTBF of a disk

Typical MTBF of a disk range between 30 and 120 years (source:
seagate)

• Does this mean that my disk can run for 30 years without
failures?

I No, this MTBF does not take into account aging
I This number corresponds to the MTBF during normal life

(e.g., 3 years)
• Testing 1000 disks during 6 months, we observe that only 6

fail → MTBF of 83 years

5

More about MTBF
The bathtub

• Infant mortality is due to defective products

• During normal operation, failure rate is low and almost
constant

6

MTBF of complex systems

In a system integrating many components, the failure of any of the
components can result in the failure on the whole system.

We use 1000 disks to build a large storage server.

• Recall: 1000 disks run during 6 months and only 6 fail.

• Failure rate = 6
1×0.5 = 12

• MTBF = 1
12 = 1 month

• Note that most data are still available when a disk fails

7

MTBF range of other complex systems

• A laptop/desktop
I Typical MTBF in the order of 3 years

• A data-center
I Built out of 1000 low-cost nodes
I MTBF = 3/1000 ' 26 hours
I Large scale datacenters are in the scale of tens of thousands of

nodes
I Note that in this context, the failure of a node usually does

not prevent the system from functioning.

• A supercomputer
I Typical MTBF of a node = 5 years
I Largest supercomputers = 100000 nodes
I System MTBF = 26 minutes
I Bad news: applications are usually tightly coupled

8

Characterization of Faults

A failure occurs when an error/fault reaches the service interface
and alters the service.

• Domain
I Hardware faults
I Software faults

• Intent
I Non-malicious
I Malicious

9

Characterization of Faults: Persistence

Transient (soft) faults/errors

• Occurs once and disappears

• Eg, bit-flip due to high-energy particles

• Tend to be due to transient physical phenomena

Intermittent faults/errors

• Occurs occasionally

• Eg, a router drops some packets

Permanent (hard) faults/errors

• Occurs and doesn’t go away

• Eg, a dead power supply

10

What kind of failures for large supercomputers?
Example of Blue Waters (B. Kramer, C. Di Martino et al)

Crash failures

• Hardware faults
I Node failure MTBF: 6.7 hours

• Detected (uncorrectable) soft errors
I 261 days ⇒ 1.5 Millions of memory errors
I 99.997% of the errors were corrected (28 uncorrectable errors)

11

What kind of failures for large supercomputers?
Example of Blue Waters (B. Kramer, C. Di Martino et al)

Software failures

• Some facts:
I Accounts for 75% of the system-wide outages (SWO)
I 60% of the SWO are due to problems in the failover

procedures.
I Software is the main contributor to repair time (53% – even if

only 20% of the errors)
I Main contributors: 1) File system; 2) Interconnect; 3)

Resource manager.

• Additional comments
I No bathtub curve for software

12

What kind of failures for large supercomputers?

Silent data corruptions (SDCs)

• Is it really a problem?
I Data are missing

13

Failure model

Correctness of a fault tolerance techniques has to be validated
against a failure model.

The failure model

• Crash (fail/stop) failures of nodes

• No recovery

We seek for solutions that ensures the correct termination of
parallel applications despite crash failures.

14

Failure model

Correctness of a fault tolerance techniques has to be validated
against a failure model.

The failure model

• Crash (fail/stop) failures of nodes

• No recovery

We seek for solutions that ensures the correct termination of
parallel applications despite crash failures.

14

Agenda

About failures in large scale systems

The basic problem

Checkpoint-based protocols

Log-based protocols

Recent contributions

Alternatives to rollback-recovery

15

Failures in distributed applications

P0

P1

P2

P3

P4

P5 P6

P7

P1

P0

P2

P3

P4

P5 P6

P7

Tightly coupled applications

• One process failure prevents all processes from progressing

16

Failures in distributed applications

P0

P1

P2

P3

P4

P5 P6

P7

P1

P0

P2

P3

P4

P5 P6

P7

Tightly coupled applications

• One process failure prevents all processes from progressing

16

Failures in distributed applications

P0

P1

P2

P3

P4

P5 P6

P7

P1

P0

P2

P3

P4

P5 P6

P7

Tightly coupled applications

• One process failure prevents all processes from progressing

16

Problem definition

A message-passing application

• A fix set of N processes

• Communication by exchanging messages
I MPI application

• Cooperate to execute a distributed algorithm

An asynchronous distributed system

• Finite set of communication channels connecting any ordered
pair of processes

I Reliable
I FIFO
I Ex: TCP, MPI

• Asynchronous
I Unknown bound on message transmission delays
I No order between messages on different channels

17

Problem definition

A message-passing application

• A fix set of N processes

• Communication by exchanging messages
I MPI application

• Cooperate to execute a distributed algorithm

An asynchronous distributed system

• Finite set of communication channels connecting any ordered
pair of processes

I Reliable
I FIFO
I Ex: TCP, MPI

• Asynchronous
I Unknown bound on message transmission delays
I No order between messages on different channels

17

Problem definition

Crash failures

• When a process fails, it stops executing and communicating.

• All data stored locally is lost

Fault tolerance

• How to ensure the correct execution of the application in the
presence of faults?

I The execution should terminate
I It should provide the correct result

18

Problem definition

Crash failures

• When a process fails, it stops executing and communicating.

• All data stored locally is lost

Fault tolerance

• How to ensure the correct execution of the application in the
presence of faults?

I The execution should terminate
I It should provide the correct result

18

Backward error recovery

Rollback-recovery (other name)

• Restores the application to a previous error-free state when a
failure is detected

• Information about the state of the application saved during
failure free execution

• Assumes the error will be gone when resuming execution
I Transient (soft) error
I Use spare resources to replace faulty ones in case of hard error

BER techniques

• Checkpointing: saving the system state

• Logging: saving changes made to the system

19

Checkpointing

• Periodically save the state of the application

• Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Checkpoint data is saved to reliable storage:

• Reliable storage survives expected failures

• For single node failure, the memory of a neighbor node is a
reliable storage

• The parallel file system is a reliable storage

20

Checkpointing

• Periodically save the state of the application

• Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Checkpoint data is saved to reliable storage:

• Reliable storage survives expected failures

• For single node failure, the memory of a neighbor node is a
reliable storage

• The parallel file system is a reliable storage

20

Checkpointing

• Periodically save the state of the application

• Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Checkpoint data is saved to reliable storage:

• Reliable storage survives expected failures

• For single node failure, the memory of a neighbor node is a
reliable storage

• The parallel file system is a reliable storage

20

Checkpointing

• Periodically save the state of the application

• Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Checkpoint data is saved to reliable storage:

• Reliable storage survives expected failures

• For single node failure, the memory of a neighbor node is a
reliable storage

• The parallel file system is a reliable storage

20

Checkpointing

• Periodically save the state of the application

• Restart from last checkpoint in the event of a failure

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

Checkpoint data is saved to reliable storage:

• Reliable storage survives expected failures

• For single node failure, the memory of a neighbor node is a
reliable storage

• The parallel file system is a reliable storage

20

Checkpointing a message-passing application

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6
m5

• There is no guaranty that m5 will still exists (with the same
content)

• Processes p0, p1 and p2 might follow a different execution
path

• The state of the application would become inconsistent
I Ensuring a consistent state after the failure is the role of the

rollback-recovery protocol

21

Checkpointing a message-passing application

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6
m5

• There is no guaranty that m5 will still exists (with the same
content)

• Processes p0, p1 and p2 might follow a different execution
path

• The state of the application would become inconsistent
I Ensuring a consistent state after the failure is the role of the

rollback-recovery protocol

21

Checkpointing a message-passing application

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6
m5

• There is no guaranty that m5 will still exists (with the same
content)

• Processes p0, p1 and p2 might follow a different execution
path

• The state of the application would become inconsistent
I Ensuring a consistent state after the failure is the role of the

rollback-recovery protocol

21

Checkpointing a message-passing application

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6
m5

• There is no guaranty that m5 will still exists (with the same
content)

• Processes p0, p1 and p2 might follow a different execution
path

• The state of the application would become inconsistent
I Ensuring a consistent state after the failure is the role of the

rollback-recovery protocol

21

Events and partial order

• The execution of a process can be modeled as a sequence of
events.

• The history of process p, noted H(p), includes send(), recv()
and internal events.

Lamport’s Happened-before relation1

• noted →
• Events on one process are totally ordered

I If e, e’ ∈ H(p), then e → e′ or e′ → e

• send(m) → recv(m)

• Transitivity
I if e → e′ and e′ → e′′, then e → e′′

1L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. Communications of the ACM (1978).

22

Events and partial order

• The execution of a process can be modeled as a sequence of
events.

• The history of process p, noted H(p), includes send(), recv()
and internal events.

Lamport’s Happened-before relation1

• noted →
• Events on one process are totally ordered

I If e, e’ ∈ H(p), then e → e′ or e′ → e

• send(m) → recv(m)

• Transitivity
I if e → e′ and e′ → e′′, then e → e′′

1L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. Communications of the ACM (1978).

22

Happened-before relation

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6

Happened-before relations:

• recv(m2) → send(m5)

• send(m3) ‖ send(m4)

23

Consistent global state

A rollback-recovery protocol should restore the application in a
consistent global state after a failure.

• A consistent state is one that could have been seen during
failure-free execution

• A consistent state is a state defined by a consistent cut.

Definition
A cut C is consistent iff for all events e and e ′:

e ′ ∈ C and e → e ′ =⇒ e ∈ C

• If the state of a process reflects a message reception, then the
state of the corresponding sender should reflect the sending of
that message

24

Consistent global state

A rollback-recovery protocol should restore the application in a
consistent global state after a failure.

• A consistent state is one that could have been seen during
failure-free execution

• A consistent state is a state defined by a consistent cut.

Definition
A cut C is consistent iff for all events e and e ′:

e ′ ∈ C and e → e ′ =⇒ e ∈ C

• If the state of a process reflects a message reception, then the
state of the corresponding sender should reflect the sending of
that message

24

Consistent global state

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6

Inconsistent recovery line

• Message m5 is an orphan message

• P3 is an orphan process

25

Consistent global state

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6

Inconsistent recovery line

• Message m5 is an orphan message

• P3 is an orphan process

25

Consistent global state

p0

p1

p2

p3

m0

m1

m2 m3

m4

m5 m6

Inconsistent recovery line

• Message m5 is an orphan message

• P3 is an orphan process

25

Before discussing protocols design

• What data to save?

• How to save the state of a process?

• Where to store the data? (reliable storage)

• How frequently to checkpoint?

26

What data to save?

• The non-temporary application data

• The application data that have been modified since the last
checkpoint

Incremental checkpointing

• Monitor data modifications between checkpoints to save only
the changes

I Save storage space
I Reduce checkpoint time

• Makes garbage collection more complex
I Garbage collection = deleting checkpoints that are no longer

useful

27

What data to save?

• The non-temporary application data

• The application data that have been modified since the last
checkpoint

Incremental checkpointing

• Monitor data modifications between checkpoints to save only
the changes

I Save storage space
I Reduce checkpoint time

• Makes garbage collection more complex
I Garbage collection = deleting checkpoints that are no longer

useful

27

How to save the state of a process?

Application-level checkpointing

The programmer provides the code to save the process state

© Only useful data are stored

© Checkpoint saved when the state is small

§ Difficult to control the checkpoint frequency

§ The programmer has to do the work

System-level checkpointing

The process state is saved by an external tool (ex: BLCR)

§ The whole process state is saved

© Full control on the checkpoint frequency

© Transparent for the programmer

28

How frequently to checkpoint?

• Checkpointing too often prevents the application from making
progress

• Checkpointing too infrequently leads to large roll backs in the
event of a failure

Optimal checkpoint frequency depends on:

• The time to checkpoint

• The time to restart/recover

• The failure distribution

29

Agenda

About failures in large scale systems

The basic problem

Checkpoint-based protocols

Log-based protocols

Recent contributions

Alternatives to rollback-recovery

30

Checkpointing protocols

Three categories of techniques

• Uncoordinated checkpointing

• Coordinated checkpointing

• Communication-induced checkpointing (not efficient with
HPC workloads1)

1L. Alvisi et al. “An analysis of communication-induced checkpointing”.
FTCS. 1999.

31

Uncoordinated checkpointing

Idea
Save checkpoints of each process independently.

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

Problem

• Is there any guaranty that we can find a consistent state after
a failure?

• Domino effect
I Cascading rollbacks on all processes (unbounded)
I If process p1 fails, the only consistent state we can find is the

initial state

32

Uncoordinated checkpointing

Idea
Save checkpoints of each process independently.

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

Problem

• Is there any guaranty that we can find a consistent state after
a failure?

• Domino effect
I Cascading rollbacks on all processes (unbounded)
I If process p1 fails, the only consistent state we can find is the

initial state

32

Uncoordinated checkpointing

Idea
Save checkpoints of each process independently.

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

Problem

• Is there any guaranty that we can find a consistent state after
a failure?

• Domino effect
I Cascading rollbacks on all processes (unbounded)
I If process p1 fails, the only consistent state we can find is the

initial state

32

Uncoordinated checkpointing

Implementation

• Direct dependencies between the checkpoint intervals are
recorded

I Data piggybacked on messages and saved in the checkpoints

• Used after a failure to construct a dependency graph and
compute the recovery line

I [Bhargava and Lian, 1988]
I [Wang, 1993]

Other comments

• Garbage collection is very inefficient
I Hard to decide when a checkpoint is not useful anymore
I Many checkpoints may have to be stored

33

Coordinated checkpointing

Idea
Coordinate the processes at checkpoint time to ensure that the
global state that is saved is consistent.

• No domino effect

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

34

Coordinated checkpointing

Idea
Coordinate the processes at checkpoint time to ensure that the
global state that is saved is consistent.

• No domino effect

p0

p1

p2

m0

m1 m2

m3 m4

m5

m6

34

Coordinated checkpointing

Recovery after a failure

• All processes restart from the last coordinated checkpoint
I Even the non-failed processes have to rollback

• Idea: Restart only the processes that depend on the failed
process1

I In HPC apps: transitive dependencies between all processes

1R. Koo et al. “Checkpointing and Rollback-Recovery for Distributed
Systems”. ACM Fall joint computer conference. 1986.

35

Coordinated checkpointing

Other comments

• Simple and efficient garbage collection
I Only the last checkpoint should be kept

• Performance issues?
I What happens when one wants to save the state of all

processes at the same time?

How to coordinate?

36

Coordinated checkpointing

Other comments

• Simple and efficient garbage collection
I Only the last checkpoint should be kept

• Performance issues?
I What happens when one wants to save the state of all

processes at the same time?

How to coordinate?

36

At the application level

Idea: Take advantage of the structure of the code

• The application code might already include global
synchronization

I MPI collective operations

• In iterative codes, checkpoint every N iterations

37

Time-based checkpointing1

Idea

• Each process takes a checkpoint at the same time

• A solution is needed to synchronize clocks

1N. Neves et al. “Coordinated checkpointing without direct coordination”.
IPDS’98.

38

Time-based checkpointing

To ensure consistency

• After checkpointing, a process should not send a message that
could be received before the destination saved its checkpoint

I The process waits for a delay corresponding to the effective
deviation

I The effective deviation is computed based on the clock drift
and the message transmission delay

p0

p1

m

ED

t(drift)

ED = t(clock drift)−minimum transmission delay

39

Blocking coordinated checkpointing1

1. The initiator broadcasts a checkpoint request to all processes

2. Upon reception of the request, each process stops executing
the application and saves a checkpoint, and sends ack to the
initiator

3. When the initiator has received all acks, it broadcasts ok

4. Upon reception of the ok message, each process deletes its old
checkpoint and resumes execution of the application

p0

p1

p2

checkpoint

request

ac
k

ac
k

ok . . .

. . .

. . .

1Y. Tamir et al. “Error Recovery in Multicomputers Using Global
Checkpoints”. ICPP. 1984.

40

Blocking coordinated checkpointing1

1. The initiator broadcasts a checkpoint request to all processes

2. Upon reception of the request, each process stops executing
the application and saves a checkpoint, and sends ack to the
initiator

3. When the initiator has received all acks, it broadcasts ok

4. Upon reception of the ok message, each process deletes its old
checkpoint and resumes execution of the application

p0

p1

p2

checkpoint

request

ac
k

ac
k

ok . . .

. . .

. . .

1Y. Tamir et al. “Error Recovery in Multicomputers Using Global
Checkpoints”. ICPP. 1984.

40

Blocking coordinated checkpointing1

1. The initiator broadcasts a checkpoint request to all processes

2. Upon reception of the request, each process stops executing
the application and saves a checkpoint, and sends ack to the
initiator

3. When the initiator has received all acks, it broadcasts ok

4. Upon reception of the ok message, each process deletes its old
checkpoint and resumes execution of the application

p0

p1

p2

checkpoint

request

ac
k

ac
k

ok . . .

. . .

. . .

1Y. Tamir et al. “Error Recovery in Multicomputers Using Global
Checkpoints”. ICPP. 1984.

40

Blocking coordinated checkpointing1

1. The initiator broadcasts a checkpoint request to all processes

2. Upon reception of the request, each process stops executing
the application and saves a checkpoint, and sends ack to the
initiator

3. When the initiator has received all acks, it broadcasts ok

4. Upon reception of the ok message, each process deletes its old
checkpoint and resumes execution of the application

p0

p1

p2

checkpoint

request

ac
k

ac
k

ok . . .

. . .

. . .

1Y. Tamir et al. “Error Recovery in Multicomputers Using Global
Checkpoints”. ICPP. 1984.

40

Blocking coordinated checkpointing

Correctness
Does the global checkpoint corresponds to a consistent state, i.e.,
a state with no orphan messages?

Proof sketch (by contradiction)

• We assume the state is not consistent, and there is an orphan
message m such that:

send(m) 6∈ C and recv(m) ∈ C

• It means that m was sent after receiving ok by pi

• It also means that m was received before receiving checkpoint
by pj

• It implies that:

recv(m)→ recvj(ckpt)→ recvi (ok)→ send(m)

41

Blocking coordinated checkpointing

Correctness
Does the global checkpoint corresponds to a consistent state, i.e.,
a state with no orphan messages?

Proof sketch (by contradiction)

• We assume the state is not consistent, and there is an orphan
message m such that:

send(m) 6∈ C and recv(m) ∈ C

• It means that m was sent after receiving ok by pi

• It also means that m was received before receiving checkpoint
by pj

• It implies that:

recv(m)→ recvj(ckpt)→ recvi (ok)→ send(m)

41

Non-blocking coordinated checkpointing1

• Goal: Avoid the cost of synchronization

• How to ensure consistency?

p0

p1

p2

initiator

m

• Inconsistent global state

• Message m is orphan

p0

p1

p2

initiator

• Consistent global state
I Send a marker to force p2

to save a checkpoint
before delivering m

1K. Chandy et al. “Distributed Snapshots: Determining Global States of
Distributed Systems”. ACM Transactions on Computer Systems (1985).

42

Non-blocking coordinated checkpointing1

• Goal: Avoid the cost of synchronization

• How to ensure consistency?

p0

p1

p2

initiator

m

• Inconsistent global state

• Message m is orphan

p0

p1

p2

initiator

• Consistent global state
I Send a marker to force p2

to save a checkpoint
before delivering m

1K. Chandy et al. “Distributed Snapshots: Determining Global States of
Distributed Systems”. ACM Transactions on Computer Systems (1985).

42

Non-blocking coordinated checkpointing1

• Goal: Avoid the cost of synchronization

• How to ensure consistency?

p0

p1

p2

initiator

m

• Inconsistent global state

• Message m is orphan

p0

p1

p2

initiator

• Consistent global state
I Send a marker to force p2

to save a checkpoint
before delivering m

1K. Chandy et al. “Distributed Snapshots: Determining Global States of
Distributed Systems”. ACM Transactions on Computer Systems (1985).

42

Non-blocking coordinated checkpointing1

• Goal: Avoid the cost of synchronization

• How to ensure consistency?

p0

p1

p2

initiator

m

• Inconsistent global state

• Message m is orphan

p0

p1

p2

initiator

• Consistent global state
I Send a marker to force p2

to save a checkpoint
before delivering m

1K. Chandy et al. “Distributed Snapshots: Determining Global States of
Distributed Systems”. ACM Transactions on Computer Systems (1985).

42

Non-blocking coordinated checkpointing

Assuming FIFO channels:

1. The initiator takes a checkpoint and broadcasts a checkpoint
request to all processes

2. Upon reception of the request, each process (i) takes a
checkpoint, and (ii) broadcast checkpoint-request to all.
No event can occur between (i) and (ii).

3. Upon reception of checkpoint-request message from all, a
process deletes its old checkpoint

43

Non-blocking coordinated checkpointing

Assuming FIFO channels:

1. The initiator takes a checkpoint and broadcasts a checkpoint
request to all processes

2. Upon reception of the request, each process (i) takes a
checkpoint, and (ii) broadcast checkpoint-request to all.
No event can occur between (i) and (ii).

3. Upon reception of checkpoint-request message from all, a
process deletes its old checkpoint

43

Non-blocking coordinated checkpointing

Assuming FIFO channels:

1. The initiator takes a checkpoint and broadcasts a checkpoint
request to all processes

2. Upon reception of the request, each process (i) takes a
checkpoint, and (ii) broadcast checkpoint-request to all.
No event can occur between (i) and (ii).

3. Upon reception of checkpoint-request message from all, a
process deletes its old checkpoint

43

Agenda

About failures in large scale systems

The basic problem

Checkpoint-based protocols

Log-based protocols

Recent contributions

Alternatives to rollback-recovery

44

Message-logging protocols

Idea: Logging the messages exchanged during failure free execution
to be able to replay them in the same order after a failure

3 families of protocols

• Pessimistic

• Optimistic

• Causal

45

Piecewise determinism

The execution of a process is a set of deterministic state intervals,
each started by a non-deterministic event.

• Most of the time, the only non-deterministic events are
message receptions

p

i

state interval

i-1 i+1

state interval

i+2

From a given initial state, playing the same sequence of messages
will always lead to the same final state.

46

Message logging

Basic idea

• Log all non-deterministic events during failure-free execution

• After a failure, the process re-executes based on the events in
the log

Consistent state

• If all non-deterministic events have been logged, the process
follows the same execution path after the failure

I Other processes do not roll back. They wait for the failed
process to catch up

47

Message logging

What is logged?

• The content of the messages (payload)

• The delivery order of each message (determinant)
I Sender id
I Sender sequence number
I Receiver id
I Receiver sequence number

48

Where to store the data?

Sender-based message logging1

• The payload can be saved in the memory of the sender

• If the sender fails, it will generate the messages again during
recovery

Event logging

• Determinants have to be saved on a reliable storage

• They should be available to the recovering processes

1D. B. Johnson et al. “Sender-Based Message Logging”. The 17th Annual
International Symposium on Fault-Tolerant Computing. 1987.

49

Event logging

Important

• Determinants are saved by message receivers

• Event logging has an impact on performance as it involves a
remote synchronization

The 3 protocol families correspond to different ways of managing
determinants.

50

The always no-orphan condition1

An orphan message is a message that is seen has received, but
whose sending state interval cannot be recovered.

p0

p1

p2

p3

m0

m1 m2

If the determinants of messages m0 and m1 have not been saved,
then message m2 is orphan.

1L. Alvisi et al. “Message Logging: Pessimistic, Optimistic, Causal, and
Optimal”. IEEE Transactions on Software Engineering (1998).

51

The always no-orphan condition

• e: a non-deterministic event

• Depend(e): the set of processes whose state causally depends
on e

• Log(e): the set of processes that have a copy of the
determinant of e in their memory

• Stable(e): a predicate that is true if the determinant of e is
logged on a reliable storage

To avoid orphans:

∀e : ¬Stable(e)⇒ Depend(e) ⊆ Log(e)

52

Pessimistic message logging

Failure-free protocol

• Determinants are logged
synchronously on reliable storage

∀e : ¬Stable(e)⇒ |Depend(e)| = 1

p

EL

det
ack

sending delay

Recovery

• Only the failed process has to restart

53

Optimistic message logging

Failure-free protocol

• Determinants are logged
asynchronously (periodically) on
reliable storage

p

EL

det
ack

risk of orphan

Recovery

• All processes whose state depends on a lost event have to
rollback

• Causal dependency tracking has to be implemented during
failure-free execution

54

Causal message logging

Failure-free protocol

• Implements the
”always-no-orphan” condition

• Determinants are piggybacked on
application messages until they are
saved on reliable storage

p
[det]

Recovery

• Only the failed process has to rollback

55

Comparison of the 3 families

Failure-free performance

• Optimistic ML is the most efficient

• Synchronizing with a remote storage is costly

• Piggybacking potentially large amount of data on messages is
costly

Recovery performance

• Pessimistic ML is the most efficient

• Recovery protocols of optimistic and causal ML can be
complex

56

Message logging + checkpointing

Message logging is combined with checkpointing

• To reduce the extends of rollbacks in time

• To reduce the size of the logs

Which checkpointing protocol?

• Uncoordinated checkpointing can be used
I No risk of domino effect

• Nothing prevents from using coordinated checkpointing

57

Agenda

About failures in large scale systems

The basic problem

Checkpoint-based protocols

Log-based protocols

Recent contributions

Alternatives to rollback-recovery

58

Limits of legacy solutions at scale

Coordinated checkpointing

• Contention on the parallel file system if all processes
checkpoint/restart at the same time

I More than 50% of wasted time?1

I Solution: see multi-level checkpointing

• Restarting millions of processes because of a single process
failure is a big waste of resources

1R. A. Oldfield et al. “Modeling the Impact of Checkpoints on
Next-Generation Systems”. MSST 2007.

59

Limits of legacy solutions at scale

Message logging

• Logging all messages payload consumes a lot of memory
I Running a climate simulation (CM1) on 512 processes

generates > 1GB/s of logs1

• Managing determinants is costly in terms of performance
I Frequent synchronization with a reliable storage has a high

overhead
I Piggybacking information on messages penalizes

communication performance

1T. Ropars et al. “SPBC: Leveraging the Characteristics of MPI HPC
Applications for Scalable Checkpointing”. SuperComputing 2013.

60

Coordinated checkpointing + Optimistic ML1

Optimistic ML and coordinated checkpointing are combined

• Dedicated event-logger nodes are used for efficiency

Optimistic message logging

• Negligible performance overhead in failure-free execution

• If no determinant is lost in a failure, only the failed processes
restart

Coordinated checkpointing

• If determinants are lost in a failure, simply restart from the
last checkpoint

I Case of the failure of an event logger
I No complex recovery protocol

• It simplifies garbage collection of messages

1R. Riesen et al. “Alleviating scalability issues of checkpointing protocols”.
SuperComputing 2012.

61

Revisiting communication events1

Idea

• Piecewise determinism assumes all message receptions are
non-deterministic events

• In MPI most reception events are deterministic
I Discriminating deterministic communication events will

improve event logging efficiency

Impact

• The cost of (pessimistic) event logging becomes negligible

1A. Bouteiller et al. “Redesigning the Message Logging Model for High
Performance”. Concurrency and Computation : Practice and Experience
(2010).

62

Revisiting communication events

MPI_Isend(m,req1)

MPI_Irecv(req2)

Packet 1 Packet 2 ... Packet n

post(req2) match(req2,m)

MPI_Wait(req1)

complete(req2)

MPI_Wait(req2)

P1

MPI

Library

MPI

Library

P2

send(m)

deliver(m)

New execution model
2 events associated with each message reception:

• Matching between message and reception request
I Not deterministic only if ANY SOURCE is used

• Completion when the whole message content has been placed
in the user buffer

I Not deterministic only for wait any/some and test functions

63

Hierarchical protocols1

The application processes are grouped in logical clusters

Failure-free execution

• Take coordinated
checkpoints inside clusters
periodically

• Log inter-cluster messages

Recovery

• Restart the failed cluster
from the last checkpoint

• Replay missing inter-cluster
messages from the logs

P P

P

P P

P P

P PP P

P P

PP

1A. Bouteiller et al. “Correlated Set Coordination in Fault Tolerant Message
Logging Protocols”. Euro-Par’11.

64

Hierarchical protocols1

The application processes are grouped in logical clusters

Failure-free execution

• Take coordinated
checkpoints inside clusters
periodically

• Log inter-cluster messages

Recovery

• Restart the failed cluster
from the last checkpoint

• Replay missing inter-cluster
messages from the logs

P P

P

P P

P P

P PP P

P P

PP

1A. Bouteiller et al. “Correlated Set Coordination in Fault Tolerant Message
Logging Protocols”. Euro-Par’11.

64

Hierarchical protocols1

The application processes are grouped in logical clusters

Failure-free execution

• Take coordinated
checkpoints inside clusters
periodically

• Log inter-cluster messages

Recovery

• Restart the failed cluster
from the last checkpoint

• Replay missing inter-cluster
messages from the logs

P P

P

P P

P P

P PP P

P P

PP

1A. Bouteiller et al. “Correlated Set Coordination in Fault Tolerant Message
Logging Protocols”. Euro-Par’11.

64

Hierarchical protocols1

The application processes are grouped in logical clusters

Failure-free execution

• Take coordinated
checkpoints inside clusters
periodically

• Log inter-cluster messages

Recovery

• Restart the failed cluster
from the last checkpoint

• Replay missing inter-cluster
messages from the logs

P P

P

P P

P P

P PP P

P P

PP

1A. Bouteiller et al. “Correlated Set Coordination in Fault Tolerant Message
Logging Protocols”. Euro-Par’11.

64

Hierarchical protocols1

The application processes are grouped in logical clusters

Failure-free execution

• Take coordinated
checkpoints inside clusters
periodically

• Log inter-cluster messages

Recovery

• Restart the failed cluster
from the last checkpoint

• Replay missing inter-cluster
messages from the logs

P P

P

P P

P P

P PP P

P P

PP

1A. Bouteiller et al. “Correlated Set Coordination in Fault Tolerant Message
Logging Protocols”. Euro-Par’11.

64

Hierarchical protocols1

The application processes are grouped in logical clusters

Failure-free execution

• Take coordinated
checkpoints inside clusters
periodically

• Log inter-cluster messages

Recovery

• Restart the failed cluster
from the last checkpoint

• Replay missing inter-cluster
messages from the logs

P P

P

P P

P P

P PP P

P P

PP

1A. Bouteiller et al. “Correlated Set Coordination in Fault Tolerant Message
Logging Protocols”. Euro-Par’11.

64

Hierarchical protocols

Advantages

• Reduced number of logged messages
I But the determinant of all messages should be logged1

• Only a subset of the processes restart after a failure
I Failure containment2

1A. Bouteiller et al. “Correlated Set Coordination in Fault Tolerant Message
Logging Protocols”. Euro-Par’11.

2J. Chung et al. “Containment Domains: A Scalable, Efficient, and Flexible
Resilience Scheme for Exascale Systems”. SuperComputing 2012.

65

Hierarchical protocols

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
e

c
e

iv
e

r
R

a
n

k

Sender Rank

MiniFE - 64 processes - Pb size: 200x200x200

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

A
m

o
u

n
t
o

f
D

a
ta

 i
n

 B
y
te

s

Good applicability to most HPC workloads1

• < 15% of logged messages

• < 15% of processes to restart after a failure

1T. Ropars et al. “On the Use of Cluster-Based Partial Message Logging to
Improve Fault Tolerance for MPI HPC Applications”. Euro-Par’11.

66

Revisiting execution models1

Non-deterministic algorithm

• An algorithm A is non-deterministic is its execution path is
influenced by non-deterministic events

• Assumption we have considered until now

Send-deterministic algorithm

• An algorithm A is send-deterministic, if for an initial state Σ,
and for any process p, the sequence of send events on p is the
same in any valid execution of A.

• Most HPC applications are send-deterministic

1F. Cappello et al. “On Communication Determinism in Parallel HPC
Applications”. ICCCN 2010.

67

Revisiting execution models1

Non-deterministic algorithm

• An algorithm A is non-deterministic is its execution path is
influenced by non-deterministic events

• Assumption we have considered until now

Send-deterministic algorithm

• An algorithm A is send-deterministic, if for an initial state Σ,
and for any process p, the sequence of send events on p is the
same in any valid execution of A.

• Most HPC applications are send-deterministic

1F. Cappello et al. “On Communication Determinism in Parallel HPC
Applications”. ICCCN 2010.

67

Revisiting execution models1

Non-deterministic algorithm

• An algorithm A is non-deterministic is its execution path is
influenced by non-deterministic events

• Assumption we have considered until now

Send-deterministic algorithm

• An algorithm A is send-deterministic, if for an initial state Σ,
and for any process p, the sequence of send events on p is the
same in any valid execution of A.

• Most HPC applications are send-deterministic

1F. Cappello et al. “On Communication Determinism in Parallel HPC
Applications”. ICCCN 2010.

67

Impact of send-determinism

The relative order of the messages received by a process has no
impact on its execution.

p0

p1

p2

m1

m2

m3

It is possible to design an uncoordinated checkpointing protocol
that has no risk of domino effect1.

1A. Guermouche et al. “Uncoordinated Checkpointing Without Domino
Effect for Send-Deterministic Message Passing Applications”. IPDPS2011.

68

Impact of send-determinism

The relative order of the messages received by a process has no
impact on its execution.

p0

p1

p2

m1

m2

m3

It is possible to design an uncoordinated checkpointing protocol
that has no risk of domino effect1.

1A. Guermouche et al. “Uncoordinated Checkpointing Without Domino
Effect for Send-Deterministic Message Passing Applications”. IPDPS2011.

68

Revisiting message logging protocols1

For send-deterministic MPI applications that do not include
ANY SOURCE receptions:

• Message logging does not need event logging

• Only logging the payload is required

• This result applies also to hierarchical protocols

For applications including ANY SOURCE receptions:

• Minor modifications of the code are required

1T. Ropars et al. “SPBC: Leveraging the Characteristics of MPI HPC
Applications for Scalable Checkpointing”. SuperComputing 2013.

69

Revisiting message logging protocols1

For send-deterministic MPI applications that do not include
ANY SOURCE receptions:

• Message logging does not need event logging

• Only logging the payload is required

• This result applies also to hierarchical protocols

For applications including ANY SOURCE receptions:

• Minor modifications of the code are required

1T. Ropars et al. “SPBC: Leveraging the Characteristics of MPI HPC
Applications for Scalable Checkpointing”. SuperComputing 2013.

69

Agenda

About failures in large scale systems

The basic problem

Checkpoint-based protocols

Log-based protocols

Recent contributions

Alternatives to rollback-recovery

70

Failure prediction1

Idea

• Online analysis of supercomputers system logs to predict
failures

I Coverage of 50%
I Precision of 90%

• Take advantage of this information to take preventive
actions

I Save a checkpoint before the failure occurs

1M. S. Bouguerra et al. “Improving the Computing Efficiency of HPC
Systems Using a Combination of Proactive and Preventive Checkpointing”.
IPDPS’13.

71

Active replication1

rank 0 rank 1

rank 2rank 3

P0
0 P1

0 P0
1 P1

1

P0
2 P1

2P0
3 P1

3

synch synch

synchsynch

P0
1

1K. Ferreira et al. “Evaluating the Viability of Process Replication Reliability
for Exascale Systems”. SuperComputing 2011.

72

Active replication1

rank 0 rank 1

rank 2rank 3

P0
0 P1

0 P0
1 P1

1

P0
2 P1

2P0
3 P1

3

synch synch

synchsynch

P0
1

1K. Ferreira et al. “Evaluating the Viability of Process Replication Reliability
for Exascale Systems”. SuperComputing 2011.

72

Active replication1

rank 0 rank 1

rank 2rank 3

P0
0 P1

0 P0
1 P1

1

P0
2 P1

2P0
3 P1

3

synch synch

synchsynch

P0
1

1K. Ferreira et al. “Evaluating the Viability of Process Replication Reliability
for Exascale Systems”. SuperComputing 2011.

72

Active replication1

rank 0 rank 1

rank 2rank 3

P0
0 P1

0 P0
1 P1

1

P0
2 P1

2P0
3 P1

3

synch synch

synchsynch

P0
1

1K. Ferreira et al. “Evaluating the Viability of Process Replication Reliability
for Exascale Systems”. SuperComputing 2011.

72

Active replication

In the crash failure model

• Minimum overhead: 50% (2 replicas of each process)
I It is actually possible to do better!

• Failure management is transparent

• Synchronization: less than 5% for send-deterministic
applications

It could be of interest to deal with silent errors

73

Algorithmic-based fault tolerance (ABFT)

Idea

• Introduce information redundancy in the data
I Maintain the redundancy during the computation

• In the event of a failure, reconstruct the lost data thanks to
the redundant information

• Complex but very efficient solution
I Minimal amount of replicated data
I No rollback

74

User-Level Failure Mitigation (ULFM)

Context: Evolution of the MPI standard (fault tolerance working
group)

Idea

• Make the middleware fault tolerant
I The application continues to run after a crash

• Expose a set of functions to allow taking actions at the user
level after a failure:

I Failure notifications
I Checking the status of components
I Reconfiguring the application

75

Conclusion

• Many solutions with different trade-offs
I Reference: Survey by Elnozahy et al1

• A still active research topic

• Specific solutions are required
I Adapted to extreme scale supercomputers and applications

1E. N. Elnozahy et al. “A Survey of Rollback-Recovery Protocols in
Message-Passing Systems”. ACM Computing Surveys 34.3 (2002),
pp. 375–408.

76

	
	About failures in large scale systems
	The basic problem
	Checkpoint-based protocols
	Log-based protocols
	Recent contributions
	Alternatives to rollback-recovery

