
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Tunable Scheduling in a

GridRPC Framework

A. Amar and R. Bolze and Y. Caniou and
E. Caron∗,† and A. Chis and F. Desprez and
B. Depardon and J.-S. Gay and G. Le Mahec and
D. Loureiro

LIP Laboratory (UMR CNRS, ENS Lyon, INRIA, UCBL 5668)
GRAAL Project
46 Allée d’Italie, F-69364 Lyon Cedex 07

SUMMARY

Among existing grid middleware approaches, one simple, powerful, and flexible approach
consists of using servers available in different administrative domains through the classic
client-server or Remote Procedure Call (RPC) paradigm. Network Enabled Servers
(NES) implement this model also called GridRPC. Clients submit computation requests
to a scheduler whose goal is to find a server available on the grid using some performance
metric. The aim of this paper is to give an overview of a NES middleware developed
in the GRAAL team called DIET and to describe recent developments around plugin
schedulers, workflow management, and tools. DIET (Distributed Interactive Engineering
Toolbox) is a hierarchical set of components used for the development of applications
based on computational servers on the grid.

key words: Grid Computing, Scheduling, Workflow Management, Middleware Deployment,

GridRPC

1. INTRODUCTION

Large problems ranging from numerical simulation to life science can now be solved through
the Internet using grid middleware. Several approaches exist for porting applications to
grid platforms; examples include classic message-passing, batch processing, web portals, and
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2 A. AMAR ET AL.

GridRPC systems [25]. This last approach implements a grid version of the classic Remote
Procedure Call (RPC) model. Clients submit computation requests to a scheduler that locates
one or more servers available on the grid. Scheduling is frequently applied to balance the work
among the servers and a list of available servers is sent back to the client; the client is then able
to send the data and the request to one of the suggested servers to solve its problem. Thanks
to the growth of network bandwidth and the reduction of network latency, relatively small
computation requests can now be sent to servers available on the grid. To make effective use
of today’s scalable resource platforms, it is important to ensure scalability in the middleware
layers.

The Distributed Interactive Engineering Toolbox (Diet) [12, 15] project is focused on the
development of a scalable middleware with initial efforts focused on distributing the scheduling
problem across multiple agents. Diet consists of a set of elements that can be used together to
build applications using the GridRPC paradigm. This middleware is able to find an appropriate
server according to the information given in the client’s request (e.g., problem to be solved,
size of the data involved), the performance of the target platform (e.g., server load, available
memory, communication performance) and the local availability of data stored during previous
computations. The scheduler is distributed using several collaborating hierarchies connected
either statically or dynamically (in a peer-to-peer fashion). Data management is provided
to allow persistent data to stay within the system for future re-use. This feature avoids
unnecessary communication when dependencies exist between different requests (e.g., in case
of same or different requests using same data will be executed on the same server). Servers
have the possibility to launch several tasks either in a time-shared manner, either sequentially,
making servers buffer some work, with a parameter we can defined number of concurrent jobs
at a given moment on a given server [13].

Several other Network Enabled Server (NES) systems have been developed in the past [2, 19].
Among them, NetSolve [3], Ninf [20], and OmniRPC [24] have particularly pursued research
involving the GridRPC paradigm [25]. NetSolve, developed at the University of Tennessee,
Knoxville allows the connection of clients to a centralized agent and requests are sent to
servers. This centralized agent maintains a list of available servers along with their capabilities.
Servers report information about their status at given intervals, and scheduling is done based
on simple models provided by the application developers, Linpack benchmarks executed on
remote servers, and/or information given by the Network Weather Service (NWS). Some fault
tolerance is also provided at the agent level. Data management is managed either through
request sequencing or using the Internet Backplane Protocol (IBP). Client Proxies ensure
portability and interoperability with other systems like Ninf or Globus [4]. Ninf is a NES system
developed at the Grid Technology Research Center, AIST in Tsukuba. Close to NetSolve in
its initial design choices, it has evolved towards several interesting approaches using either
Globus [28, 31] or Web Services [26]. Fault tolerance is also provided using Condor and a
checkpointing library [21]. The performance of the platform can be studied using a powerful
tool called BRICKS. As compared to the NES middleware systems described above, Diet

is interesting because of the use of distributed scheduling to provide better scalability, the
ability to tune its scheduling behavior using several APIs, and the use of Corba as a core
middleware.
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Figure 1. Diet hierarchical organization.

In this paper, we present the last developments done within the Diet project that will
provide the user with an efficient, scalable for the deployment of large scale applications
following the GridRPC standard over the grid. This paper is organized as follows. In Section 2,
we recall the architecture of the Diet middleware and the characteristics that make it scalable
over large scale grids. Then in Section 3, we describe our most recent developments in
resource and server management. Core utilities for Diet management and monitoring, and the
visualization of Diet’s behavior on large scale platforms are described in Section 4. Finally,
before a conclusion, we describe two new applications ported over Diet.

2. DIET ARCHITECTURE

The Diet architecture is hierarchical for better scalability. The architecture provides flexibility
and can be adapted to diverse environments including heterogeneous network hierarchies.
Diet is implemented in Corba and thus benefits from the many standardized, stable services
provided by freely-available and high performance Corba implementations. Diet is based
on several components. A Client is an application that uses Diet to solve problems using
an RPC approach. Users can access Diet via different kinds of client interfaces: web portals,
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4 A. AMAR ET AL.

PSEs such as Scilab, or from programs written in C or C++. A SeD, or server daemon,
provides the interface to computational servers and can offer any number of application specific
computational services. A SeD can serve as the interface and execution mechanism for a
stand-alone interactive machine, or it can serve as the interface to a parallel supercomputer
by providing submission services to a batch scheduler.

Agents provide higher-level services such as scheduling and data management. These
services are made scalable by distributing them across a hierarchy of agents composed of a
single Master Agent (MA) and any number of Local Agents (LAs). Each Diet hierarchy
is independent but the MA can connect to other MAs either statically or in a peer-to-peer
fashion to access resources available via other other hierarchies. Figure 1 shows an example of
several Diet hierarchies.

A Master Agent is an entry point of our environment. In order to access Diet scheduling
services, clients only need a string-based name for the MA (e.g., “MA1”) they wish to access;
this MA name is matched with a Corba identifier object via a standard Corba naming
service. Clients submit requests for a specific computational service to the MA. The MA then
forwards the request in the Diet hierarchy and the child agents, if any exist, forward the
request onwards until the request reaches the SeDs. SeDs then evaluate their own capacity
to perform the requested service; capacity can be measured in a variety of ways including an
application-specific performance prediction, general server load, or local availability of data-
sets specifically needed by the application. SeDs forward their responses back up the agent
hierarchy. The agents perform a distributed collation and reduction of server responses until
finally the MA returns to the client a list of possible server choices sorted using an objective
function such as computation cost, communication cost, or machine load. The client program
may then submit the request directly to any of the proposed servers, though typically the
first server will be preferred as it is predicted to be the most appropriate server. The client
can submit several simultaneous requests through the use of threading computation in the
client code. However, the synchronous mode is not the only request mode. The client can also
use the asynchronous mode to submit requests to the Diet hierarchy. When submitting an
asynchronous request, the client will not wait the end of the call. To be sure that the request
has been well computed the user can use “barriers”to wait for one or all of the ended submitted
requests. The scheduling strategies used in Diet are described in Section 3.

Finally, NES environments like Ninf and NetSolve use a classic socket communication
layer. Nevertheless, several problems with this approach have been pointed out such as the
lack of portability or limitations in the number of sockets that can be opened at once. A
distributed object environment such as Corba has been proven to be a good base for building
applications that manage access to distributed services. It provides transparent communication
in heterogeneous networks, but it also offers a framework for the large scale deployment
of distributed applications. Moreover, Corba systems provide a remote method invocation
facility with a high level of transparency. This transparency should not dramatically affect the
performance since the communication layers have been carefully optimized in most Corba

implementations [14]. Thus, Corba has been chosen as a communication layer in Diet.
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Table I. Standard estimation tags used in Diet.
Information tag multi- Explanation

starts with EST value
TCOMP the predicted time to solve a problem

TIMESINCELASTSOLVE time since last solve started (seconds)
FREECPU amount of free CPU (fraction between 0 and 1)
LOADAVG CPU load average
FREEMEM amount of free memory (Mb)

NBCPU number of available processors
CPUSPEED x frequency of CPUs (MHz)
TOTALMEM total memory size (Mb)
BOGOMIPS x the BogoMips
CACHECPU x cache size CPUs (Kb)

TOTALSIZEDISK size of the partition (Mb)
FREESIZEDISK amount of free space on partition (Mb)

DISKACCESREAD average time to read from disk (Mb/sec)
DISKACCESWRITE average time to write to disk (Mb/sec)

ALLINFOS x [empty] fill all possible fields

3. DIET SCHEDULING

3.1. Plug-in Schedulers

Diet provides a special feature for scheduling through its plug-in schedulers. As the
applications that are to be deployed on the grid vary greatly in terms of performance demands,
the Diet user is provided with the possibility of defining requirements for the scheduling of
tasks by configuring the appropriate scheduler. The performance estimation values to be used
for scheduling are stored in a performance estimation vector by the SeDs as a response to
a client call propagated from the master agent to local agents and finally to the server level.
The values to be stored in this structure can be provided by CoRI (Collector of Resource
Information), which will be described in Section 3.2.

The standard values are to be identified based on standard estimation tags given in Table I.
Application developers may also define performance values to be included in a SeD response
to a client request. For example, a Diet SeD that provides a service to query particular
databases may need to include information about which databases are currently resident in its
disk cache so that data transfer times can be minimized.

Application developers can define their own performance estimation routine or function when
developing the application-specific portion of the SeD. At this point, any services added to the
SeD will be associated with the performance estimation routine declared. In the performance
estimation routine, the SeD developer should store in the provided estimation vector any
performance data to be used in the server response aggregation methods. At the time a Diet

service is defined, an aggregation method - the logical mechanism by which SeD responses
are sorted - is associated with the service. If application-specific data are supplied (i.e., the
estimation function has been redefined), an alternative method for aggregation is needed.
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Currently, a basic priority scheduler has been implemented, enabling an application developer
to specify a series of performance values that are to be optimized in succession. From the
point of view of an agent, the aggregation phase is essentially a sort of server responses from
its children. A priority scheduler logically uses a series of user-specified tags to perform the
pairwise server comparisons needed to construct the sorted list of server responses.

3.2. Collectors of Resource Information

As we have seen in the previous section, to make a good decision the scheduler requires a
measurement tool. In particular, Diet needs reliable resource information from grid resource
information services. In this section, we introduce the requirements of Diet for a grid
information service and the architecture of a new tool called Collectors of Resource Information
(CoRI).

For some time Diet was dependent on a performance prediction tool called Fast [23].
Recently, we added new performance evaluation functionalities to Diet. We are now able to
add any new monitoring tool interface or even any new prediction tool within Diet. It could
be dangerous to rely on a single prediction tool for all resource information needs. For example,
the prediction tool may not be available on a given architecture and the software dependencies
may fail or be too difficult to satisfy in a particular environment. In this case, the scheduler
does not receive enough information. We propose a new feature which provides a basic set
of performance measurements that can satisfy basic scheduler needs. This tool must always
provide an answer in order to avoid the failure of the whole grid system. If the tool is not able
to provide a measurement, a generic response must be provided. Finally, the tool must provide
one single interface for all kinds of resource information services.

The new tool has to solve two main problems. First, it must provide basic measurements
that are available regardless of the execution environment. The service developer can then
rely on this collector of resource information even if no other resource services like Fast or
NWS are available . Secondly, the tool must manage the use of different collectors at the same
time and in a similar way. We offer two solutions to these problems: the CoRI-Easy collector
for the first problem, namely the collector, and the CoRI Manager for the second problem,
namely management of different collectors. In general, we refer to these two solutions together
as the CoRI tool.

CoRI-Easy is a set of simple requests for basic resource information, and CoRI Manager
allows developer teams to add other resource information services. As CoRI-Easy is a resource
information service, it is natural to add it as a collector in the new CoRI Manager. Fast is
also available as a collector in the Manager. In addition, it is possible to add new collectors.

The CoRI Manager allows access to different modules, also referred to as collectors.
A module is any kind of element that can provide information about the system. This
modularity allows the separation of measurement sources and the selection of a module.
Even if the manager should unify the different resource information services, the trace of data
remains, and so the origin can be determined. For example, it could be important to distinguish
the data coming from the CoRI-Easy module and the Fast module, because the information
from Fast may give a more accurate estimation of the real value. The extensibility of the
system is also ensured by its modular design. Because the interface of the manager allows the
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(a) Round Robin Scheduler (b) CPU Scheduler

Figure 2. Comparison between the taskflows for 25 consecutive requests
with task inter-arrival time equal to 1 minute.

addition of a new module in some steps, additional modules like Ganglia or NWS can easily
be added.

To conclude this section, Figure 2 shows an experiment using two types of scheduler. The
first scheduler uses a simple round robin algorithm wherein we have six servers and round robin
works on a rotating basis so that one server is assigned some work, then moves to the back of
the list. The second scheduler is a CPU scheduler that maximizes the ratio of BOGOMIPS

1+load average
.

This experiment is intended to be a proof of the utility of CoRI and the plug-in schedulers
with respect to the round robin scheduling scheme existing before their development, as well
as a proof of concept in general for the facility of tunable scheduling schemes offered by DIET.

The behavior of both schedulers was studied for requests with different inter-arrival times
on a heterogeneous cluster. In this paper we focus on 1 minute for the request inter-arrival
time in order to see how the CPU scheduler performs when sufficient time is provided for an
accurate estimation of the load average. The distribution of the tasks for the CPU scheduler
was performed only on the four fastest nodes resulting in quasi-equal small times for all the
tasks. In the case of the Round Robin scheduler, some tasks were privileged by being assigned
to the fastest servers while others required longer computing times because all servers were
used and some were slower. The total computation time on the platform is smaller with the
CPU scheduler due to the fact that faster servers are more utilized. The overlap of tasks
observed in the case of the Round Robin scheduler on the slowest processor resulted in larger
computing times.

3.3. DIET Batch Scheduler Management

Parallel grid resources (parallel machines or clusters of workstations) are generally managed by
a reservation batch system such as Loadleveler∗, PBS†, or OAR‡. Such a system is responsible
for managing the submitted jobs and locating and allocating the required resources. It accepts
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user submission scripts which must normally contain a variety of information including the
requested number of resources and the amount of time needed for the reservation (walltime).

An efficient grid middleware should provide transparent access to parallel resources for the
user. It must choose the best parallel resource that suit the request, eventually provide for the
parallel malleable task the right number of processors, provide the corresponding walltime, and
submit this information to the batch system in an automatically built script in the language of
the reservation system. Indeed, as the user does not need to know where his/her job is executed
(so the computation availability, etc.), such a script should be produced by the middleware in
place of the user.

3.3.1. Transparently Submitting to Batch Schedulers

Our work relies on the Elagi∗ library. It provides in particular the possibility to submit jobs
to batch systems including Loadlever, Sun Grid Engine† and PBS. We have extended the
recognized systems list with the OAR system and we plan to complete integration for the
WMS system used in the EGEE‡ project (Enabling Grids for E-science in Europe).

The Diet parallel/batch API provides several functions on both client and server side. On
the client side, the client can explicitly ask for a sequential/parallel computation of its job,
but otherwise and whenever possible, Diet will choose the best available allocation among
sequential/parallel resources. On the server side, the SeD programmer builds a script that is
generic for all batch schedulers: the Diet server API provides generic environment variables
to perform the necessary abstraction to the site where the job is executed. For example, the
generic variable DIET_NAME_FRONTALE is the identity of the site access point and can be used to
ease data management; DIET_BATCH_NODESFILE is the name of the file containing the identity
of the batch allocated nodes which is necessary for MPI execution, etc. The SeD program
must end by a call to diet_submit_call(), which builds and submits the script at execution
time.

To measure the performance gain involved by such a feature, Figure 3 shows the mean
response time, which is the mean duration of a job in the grid system (i.e., the date of the task
completion minus the date of the task submission) obtained for three experiments conducted
on two platforms. The two platforms are composed of one client, one agent and: (1) five SeDs,
one deployed on each of 5 identical nodes; (2) one SeD deployed on the access point of a 7
nodes parallel resource: it can directly submit jobs to the batch scheduler. Thus, using the
batch possibly leads to a gain of two computing nodes (as well as a gain in deployment).
The experiment (a) is composed of a client submitting five identical tasks, each requiring 348

∗http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html
†http://www.clusterresources.com/pages/products/torque-resource-manager.php
‡http://oar.imag.fr/
∗http://grail.sdsc.edu/projects/elagi/
†http://www.sun.qassociates.co.uk/software-grid-engine.htm
‡http://public.eu-egee.org/
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TUNABLE SCHEDULING IN A GRIDRPC FRAMEWORK 9

seconds of CPU, some I/O for file transfer, at a 30 seconds rate, (b) and (c) are composed of
ten identical tasks but (c) differs by a 2 seconds rate.

One can observe that for experiment (a), the mean response time (which is also the response
time observed for each task in this case) is lower on the first platform. Indeed, we can see here
the overhead of using batch resources: the SeD is monitoring batch jobs each 30 seconds in
order not to load the parallel resource access point. Hence, the SeD is notified of the batch
completion only at some monitoring events. The monitoring rate can be changed to adapt
to a site behavior, but the overhead is low compared to parallel job durations in general.
Furthermore, as shown in experiment (b), as soon as the grid platform is loaded (tasks are
submitted at dates where no resource is idle), the mean response time (including the overhead)
is lower for a parallel resource leaded by one unique SeD. As Figure 3.c describes, the gap still
increases when the grid utilization is more important.

3.3.2. Simbatch, a Performance Prediction Module

Simbatch∗ is a C API which relies on the Simgrid[16] grid simulator to provide models of
clusters and their batch systems for multi-site grid simulations of parallel tasks. Some batch
systems have already been implemented, like PBS and OAR (which respectively rely on FCFS
and Conservative Backfilling), but the API is defined to easily integrate new ones.

Simbatch has been designed to fulfill numerous goals such as facilitating the conception
and evaluation of grid scheduling algorithms using batch systems. Experiments have been
undertaken to validate the batch simulator. Figure 4 shows representative results for an
experiment composed of 100 tasks, whose input data and output data sizes are drawn uniformly
between 1 and 20 Mbytes, whose computation time is drawn uniformly between 600 and 800
seconds, and where the required number of processors is between 1 and 5. The platform is
composed of 7 machines, interconnected by a star topology and managed by an OAR batch
system. The experiment has been run on a real architecture and simulated with the Simbatch
tool. One can observe as a function of the ending date of the tasks the percentage of error
between the measured flow (i.e., task duration) in a real OAR batch system and the flow
obtained for the same experiment with Simbatch. Note that the error is in general less than
1% in a 22 hours experiment.

The high precision of Simbatch simulation results makes it possible to use it as a performance
prediction module in the Diet environment, more particularly within the SeD part for the
monitoring step and during the batch submission step. Indeed, assuming that a performance
prediction function for the service is given by the application programmer in the SeD server,
Simbatch can simulate several scenarios to choose the best number of resources to use for the
application to finish the soonest, as well as the corresponding walltime. These information can
then be 1) used for scheduling in agents upward the hierarchy, 2) eventually re-calculated and
used when the job is effectively submitted to the chosen parallel resource, during the automatic
generation of the batch script.

∗http://graal.ens-lyon.fr/Simbatch
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3.4. DIET Workflow Management

A large number of scientific applications are represented by graphs of tasks which are
connected based on their control and data dependencies. The workflow paradigm on grids
is well adapted for representing such applications and the development of several workflow
engines [1, 22, 27, 29] illustrate significant and growing interest in workflow management
within the grid community. The success of this paradigm in complex scientific applications can
be explained by the ability to describe such applications in high levels of abstraction and in a
way that makes it easy to understand, change, and execute them.

Several techniques have been established in the grid community for defining workflows. The
most commonly used model is the graph and especially the directed acyclic graph (Dag).
Since there is no standard language to describe scientific workflows, the description language
is environment dependent and usually XML based, though some environments use scripts.
In order to support workflow applications in the Diet environment, we have developed and
integrated a workflow engine. Our approach has a simple and a high level API, the ability to
use different advanced scheduling algorithms, and it should allow the management of multi-
workflows sent concurrently to the Diet platform.

Diet users, following the GridRPC paradigm, usually submit individual tasks. Workflows
can of course be decomposed in individual tasks but the knowledge of their overall structure of
the graphs helps the scheduler to make wise mapping decisions. Thus we extended the agent
hierarchy by adding a new special agent to handle workflow submissions. This special agent,
called a MADAG, manages the different workflow submissions. An overview of the new Diet

architecture is shown in Figure 5.
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The two architectures presented in the previous figure can be used within the same Diet

platform. The use of the MADAG is based on the user choice to use his own scheduling strategy
or to use the global one provided by the MADAG. It is obvious that when the user decides
not to use the MADAG, there is no collaboration between the different clients but he can use
and test easily a new scheduling algorithm by plugging it in the client code. On the other
hand, when the MADAG is used, the workflow submissions go through this special agent and
the multi-workflow can be handled more efficiently using core heuristics. To avoid overloading
due to multiple workflow submissions from different clients, the MADAG is not responsible for
workflow execution but it only manages the scheduling phase. Two working modes can be used
in the MADAG: in the first mode, a complete schedule (which assigns priority and mapping
for each task) is provided to the client, while in the second only task priorities are returned to
the client.

4. DIET AND ADDITIONAL GRID TOOLS

Diet uses a scalable event monitoring system called LogService [17]. This monitoring service
offers the capability to monitor information that must be gathered from a distributed platform.
LogComponent attaches to a component and relays information and messages to LogCentral .
LogCentral collects messages received from LogComponents , then it stores or sends these
messages to LogTools . LogTools connect themselves to LogCentral and wait for messages.
The main interest of LogService is that information are collected by a central point LogCentral

that receives LogEvents from LogComponents that are attached to the component that needs
to be monitored. LogCentral offers the service of re-sending this information to several tools
(LogTools) which are responsible for analyzing these messages and offering a comprehensive
view of the system to the user. On each component of Diet there is a LogComponent that
sends information to LogCentral . VizDIET [6] has been developed to offer visualization of
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12 A. AMAR ET AL.

Figure 6. VizDIET screenshots.

the Diet hierarchy. VizDIET is linked against the LogTools library to be able to connect to
LogCentral and collect all events from the Diet hierarchy.

VizDIET gives a graphical representation of the platform as well as some quantitative and
qualitative information (Figure 6) about the performance and behavior of Diet. VizDIET is
very useful as it dynamically displays the activity of the platform. Moreover it can also read
a log file of a previous Diet run and replay it.

Moreover to easily manage the Diet platform, we now provide Diet Dashboard. Diet

Dashboard is a set of tools written in Java that provide Diet end-user with a friendly-user
interface to design, deploy and monitor the execution of applications. Diet Dashboard is an
extensible set of graphical tools for the Diet community. Diet Dashboard is currently based
on seven tools. (1) Workflow designer. This tool provides the user with an easy way to design
and execute workflows with Diet. After being connected to a deployed Diet platform, the
user can compose the different services available and link them by drag’n’drop. Once the
workflow designed, the user can set its parameters and then execute this application. Diet

Dashboard includes a client that can execute this workflow. The results of the workflow and
the execution log are displayed. (2) Workflow log service. This tool can be used to monitor
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TUNABLE SCHEDULING IN A GRIDRPC FRAMEWORK 13

workflows execution by displaying the Dag nodes of each workflow and their states. Three
states are available: waiting, running and done. The workflow log service can be used in two
modes:

• local mode: can be used if the Diet grid application can access to the client’s local host.
• remote mode: this mode is useful if the target platform is behind a firewall and allows

only ssh connections.

(3) Diet designer allows the user to design graphically a Diet hierarchy of schedulers and
servers. Only the application characteristics are defined (agent type: Master or Local and SeD
parameters). The designed application can be stored to be used with Diet mapping tool. (4)
Diet mapping tool allows the user to map the allocated Grid’5000 [9] resources to a Diet

application. The mapping is done in an interactive way by selecting the site then Diet agents
or SeD. For each Grid’5000 site, the nodes (or hosts) are used in a homogeneous manner
but the user can select a particular host if needed. (5) Diet deployment tool. This tool is a
graphical interface to GoDiet [11]. It provides the basic GoDiet operations: open, launch,
stop and also a monitoring mechanism to check if Diet application elements are still alive
(three states are available: unknown, dead and running). As for the workflow log service, the
Diet deployment tool can be used in a local or remote mode. (6) Diet resource tool. This
tool was designed to manage the user grid resources which is an important aspect of grid
computing. Currently this tool is used only for the Grid’5000 platform and provides several
operations to facilitate the access to this platform (see Figure 7). The main features:

• Displaying the status of the platform: this feature provides information on clusters, nodes
and jobs.

• Resources allocation: this feature provides an easy way to allocate resources by selecting
in a Grid’5000 map the number of required nodes and the time needed for execution.
The allocated resources can be stored and used with the Diet mapping tool.

(7) XMLGoDIETGenerator. This tool was designed to help the end-user creating hierarchies
from existing frameworks based on the reserved resources. The user is asked to choose an
experience (a framework of hierarchy) from the ones available (personal hierarchies can
be added, for more information see the XMLGoDIETGenerator documentation). For each
hierarchy the user has to specify the required elements involved (MA/LA/SeD). Finally a
platform is generated and the user can then deploy it through the Diet deploy tool.

Some experiments have been conducted with Diet on Grid’5000 using this set of tools.
Grid’5000 is a large scale experimental grid platform connecting clusters in nine different
research centers in France. We have evaluated the scalability of Diet over more than one
thousand processors distributed in this nation-wide grid. The experimental process used for
performing these tests involved four main steps. (1) Reserve with OAR [8] 550 dual-processor
nodes which will be used to run the Diet components. (2) Generate an XML file describing
the reserved nodes and the desired deployment. (3) Use GoDiet [11] to deploy the hierarchy of
Diet components. (4) Launch 1040 clients which continuously submit requests to the hierarchy
for solving a matrix multiplication problem (dgemm).

During this experiment, there was one local agent managing each cluster. There were a total
of 540 SeDs running the same service (dgemm), eight local agents, and one master agent.
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Figure 7. Diet resource tool screenshot.

13761 requests were computed by the Diet hierarchy. The scheduling heuristic was a simple
round robin approach† that used the time since last solve for each SeD to coordinate round
robin behavior amongst the distributed SeDs. Figure 8 shows that the time taken by agents to
schedule requests depends on the computing power and the network connection of the nodes
within the cluster. There are some huge variations of response time except at Lyon and Paraci.
This can be explained by the fact that the nodes used by the SeDs and agents were shared
with other users. At Lyon and Paraci the nodes were reserved in an exclusive mode so that
response time remains relatively constant. The main goal of this experiment was to prove that
Diet can be used on large scale grids while maintaining a low response time (average of 1.9
s) despite a heavy load (1040 clients). Further experiments will be done to test and improve
Diet features and performance.

†We do not take care of the completion time of the requests, we simply want to heavily load the platform
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Figure 8. Response time of agents for scheduling client’s requests.

5. DIET APPLICATIONS

Now we describe two applications using Diet. The first one is a biological application and the
second one is a cosmological application.

5.1. A BLAST Application Using DIET

BLAST is a popular application in bioinformatics for comparing biological sequences such as
nucleotides or amino-acid sequences. The aim of such comparisons is to try to determine
the function of a new sequence by finding homologies with known sequences. A typical
use of BLAST is to compare one or more sequences to one or more biological databases.
Many approaches to parallelizing BLAST have been investigated [10, 5, 7, 30, 18] and
three levels of parallelization can be identified. In the fine grained parallelization approach,
alignment searches are performed in parallel on a single sequence pair. For the medium grained
parallelization, databases are partitioned so that alignments between a sequence and each
part of the database can be searched at once. With coarse grained parallelization, the input
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is partitioned so that multiple sequences can be compared against one or more databases at
once.

Using the Diet middleware, we developed an “N-sequences versus one database” service for
BLAST queries. On the client side, the multi-request files are partitioned into several smaller
requests according to a user strategy (decided by choosing an existing input plug-in or a
self-made one). Then, the requests are distributed over the available SeDs, which treat them
independently and send back the results to the client which merges them after choosing an
output plug-in. On the server side, a scheduling strategy can be applied to choose the most
appropriate server to execute a request. The server then sends back the result of the execution
of a BLAST implementation (including mpiBLAST when a server manages a cluster).

The next focus of the work on Diet BLAST is to introduce data replication in the database
management. In the current version, we assume that every server declaring the Diet BLAST
service owns the databases used for client requests. We also want to introduce a generic data
partitioning information system into the Diet architecture to develop an “intelligent” request
decomposition plug-in for the client. This system should be used when the input data of
a problem can be divided into multi-size parts and could benefit other applications that
use Diet as middleware. The last step is to implement a database partition system acting
like mpiBLAST to improve the performance of the single sequence versus one large database
requests.

5.2. Cosmological Simulation with RAMSES and GALICS

Ramses∗ is a grid-based hydro solver with adaptive mesh refinement. This code is used
to study large scale structure and galaxy formation: from the early universe’s structure, the
evolution of the position, mass, and velocity of the different particles is followed until now. The
raw data produced by Ramses are then processed using the Galics∗ software (HaloMaker,
TreeMaker and GalaxyMaker) to extract the halos of matter (gathering of particles), to build
the evolution tree (how each particle has evolved), and finally to build galaxies.

The experiments are done on the Grid’5000 platform. Ramses is not suited for this
heterogeneous platform as it is an MPI code. It is then convenient to use the Diet middleware
to provide a simpler, transparent way of using this cosmological simulator on each cluster
composing the platform.

The simulation we are working on is called a zoom simulation, wherein the goal is to study
in detail the evolution of the distribution of dark matter in the universe. The first part consists
of using Ramses on low resolution initial conditions (few particles) to have a global map of the
different particle clusters formed from the primordial universe until now. These data are then
post-processed using HaloMaker and the halos’ descriptions are sent back to the user, who
decides which parts may be interesting to analyze more precisely. The simulation is then rerun
on all these different parts at a higher resolution (lots of particles), and on specific locations of

∗http://www-dapnia.cea.fr/Phocea/Vie des labos/Ast/ast sstechnique.php?id ast=904
∗http://galics.iap.fr/
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the universe. The post-processing uses HaloMaker, TreeMaker and GalaxyMaker sequentially
and the final results are sent back to the user for further interpretation.

The structure of this experiment is divided in three parts: the client which sends the request
and analyzes the data; the servers that run the simulation; and a database containing the initial
conditions. The two parts of the simulation are basically the same: they run Ramses on initial
conditions, post-process the data, and return them to the client. Therefore, many SeDs capable
of managing the whole simulation may be deployed (each SeD offering two services: one for
each part), allowing Diet to choose the most accurate one at a given time, and bringing total
transparency to the user. The user will only have to send a request through Diet, which will
ask its hierarchy for the service, and run it. The access to the database will also be transparent,
as only the SeDs will have to extract the initial conditions from it. Data management is one
of our concerns as the amount of transferred data may be large: we may have file sizes up to 1
GB. We intend to use the JuxMem† software for data management, which provides location
transparency as well as data persistence in a dynamic environment. However, this part is not
yet implemented in our prototype and we still use Diet for communications between the SeDs
and the client, and scp for communications between the SeDs and the database.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented the overall architecture of Diet, a scalable environment for
the deployment on the grid of applications based on the Network Enabled Server paradigm as
well as its most recent developments. Like NetSolve and Ninf, Diet provides an interface to
the GridRPC API defined within the Global Grid Forum.

Our main objective is to improve the scalability of the platform using a distributed set
of agents managing a large set of servers available through the network. By being able to
modify the number of schedulers, we are able to ensure a level of performance adapted to
the characteristics of the platform (number of clients, number and frequency of requests,
performance of the target platform). The management of the platform is handled by several
tools like Diet Dashboard and GoDiet for the automatic deployment of the different
components, LogService for monitoring, and VizDIET for the visualization of the behavior
of Diet’s internals. Scheduling is of course one of the main research issue addressed within
our tool. Thanks to several APIs, we are able to tune the scheduler itself to either best fit the
needs of specific users or to test new heuristics for particular problems.

In our future work we plan to improve the flexibility of the plug-in schedulers, improve
the performance evaluation feature, port new applications, and finally to test several Diet

platforms at a large scale within the Grid’5000 project [9].
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