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Abstract. In the medical field, volume rendering provides good quality
3D visualizations but is still not enough interactive for a day-to-day prac-
tice. The most efficient sequential algorithm is the shear-warp algorithm.
It renders up to 10 images per second for a small dataset. The goal of
this paper is to present an efficient parallel implementation of the shear-
warp algorithm for a distributed memory architecture, a cluster of PCs
connected with a high speed network. This highly irregular algorithm
led us to implement a dynamic load balancing algorithm. Furthermore,
to reduce the overhead due to data redistribution, we overlap communi-
cations with computations using MPI’s asynchronous communications.
Using a good load-balancing and communication overlap, our implemen-
tation generates real-time 3D medical images with a good quality and a
high resolution.

1 Introduction and motivations

Real-time rendering is an important goal in visualization applications. As a mat-
ter of fact most of these applications require the generation of a sequence of im-
ages for different orientations of the volume. Consequently real-time rendering
could enable a continuous visualization of the volume as its orientation changes.
Moreover higher and higher resolution datasets combined with the high compu-
tational cost of direct volume rendering makes it difficult, if not impossible, for
sequential implementations to deliver the required level of performance. There-
fore, such applications have been parallelized not to trade off image quality for
speed. Nevertheless, Lacroute [Lac95a] developed the shear-warp algorithm that
exploits coherence in the volume and image space. This algorithm is currently
acknowledged to be the fastest sequential volume rendering algorithm.

The goal of this paper is to present an efficient parallel implementation of
the shear-warp algorithm for a distributed memory architecture, a cluster of
PCs connected with a high-speed network and using a light weight and fast
communication layer. This new parallel implementation is load balanced and
overlaps communication with computation using the MPI standard.

This paper is organized as follows : in the first part, we describe and analyze
the shear-warp algorithm. The second part exhibits the main problems associated
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with the parallel formulation. It focuses on architecture, task partitioning and
communications patterns. In the third part, we propose a new dynamic load
balancing algorithm for the shear-warp algorithm adapted to interactivity. In
order to improve the scalability of the algorithm, we discuss, in the fourth part,
the possibility of implementing communication overlap in this algorithm. The
last part gives the results we obtained for load balancing and scalability.

2 The shear-warp algorithm

To be able to reach real-time performances, we chose to parallelize the shear-warp
algorithm because it is reported to be the fastest volume rendering algorithm so
far that does not compromise quality, almost 4-7 times faster than an efficient
ray-casting algorithm. We focused on the compositing step because it has the
highest computational cost.

2.1 Description

Volume rendering [Kau96] is the process of creating a 2D image directly from 3D
volumetric data so that no information contained within the data is lost during
the rendering process. For example, in computed tomography scanned data,
useful informations are not only contained on the surfaces but also within the
data. Therefore it must have a volumetric representation, and must be displayed
using volume rendering techniques.

Lacroute and Levoy [LL94] described a fast volume rendering algorithm called
the shear-warp factorization. It is based on an algorithm that factors the view-
ing transformation into a 3D shear (parallel to the data slices), a projection
to form an intermediate but distorted image, and finally a 2D warp to form
an undistorted final image. The shear-warp factorization has the property that
rows of voxels in the volume are aligned with rows of pixels in the intermediate
image. Consequently, a scanline-based algorithm has been constructed that tra-
verses the volume and the intermediate image synchronously, taking advantage
of the spatial coherence present in both volume and image. Lacroute and Levoy
optimized the original algorithm by using spatial data structures based on run-
length encoding for both the volume and the image and also taking advantage of
early ray termination. An implementation running on an SGI Indigo workstation
renders a 256° voxel data set in one second.

This algorithm is based on three main steps :

1. the computation of the shading lookup table,
2. the projection of the volume data into the intermediate image,
3. the warping of the intermediate image.

The projection of the volume data into the intermediate image dominates the
cost of the sequential algorithm. It takes over 80% of the total amount of time
for a whole execution [AGS95].

Therefore in this paper we focus on the compositing step which is the pro-
jection of the volume data into the intermediate image.
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2.2 Analysis

The Run-Length Encoding (RLE) data structure is a sparse data structure that
contains only non-transparent voxels for the object and non-saturated pixels for
the image. Using a RLE, we skip empty voxels and saturated pixels. This implies
that scanlines may have widely different amount of data associated with them.

Data repartitions in both object and image are highly irregular. They depend
on the scene and the viewpoint. For instance, Figures 1, 2, and 3 illustrate
how the data repartition in the intermediate image depends on the viewpoint.
The default viewpoint is the zero-degree rotation angle. We compare the data
distribution of respectively 5, 10 and 20-degree rotation angle to the default
viewpoint. We can notice that the bigger the rotation is, the more different the
data repartition is.
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Fig. 1. Data repartition in the intermediate image (5-deg. rotation angle).

Finally, we outline that the shear-warp algorithm leads to a highly irregu-
lar application because of the RLE data structure. Accordingly, in the parallel
algorithm, computation and communication are very irregular as well.

3 Parallel algorithm

In this section we exhibit the main problems associated with the parallel imple-
mentation of the shear-warp algorithm. The shear-warp algorithm augmented
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Fig. 2. Data repartition in the intermediate image (10-deg. rotation angle).

with early ray termination and run-length encoding yields to an excellent per-
frame sequential rendering times. This algorithm forms the basis of our parallel
formulation. The critical issues in any parallel algorithm are concurrency, mini-

mization of communication overhead, and a good load-balancing among proces-
sors.

3.1 Related work

Some authors have already proposed parallel formulations of this algorithm for
both shared and distributed memory architectures.

Architecture To get real-time performance, both Lacroute [Lac95b] and then
Jiang and Singh [JS97] parallelized the shear-warp algorithm on a a 16-processor
SMP SGI Challenge. Unlike distributed memory architectures, this architecture
supports fine-grain and low-latency communications adapted to the irregular
communication and computation patterns of the shear-warp algorithm. They
render a 256° voxel data set at over 10 frames per second.

Amin et al. [AGS95] have implemented the shear-warp algorithm for a dis-
tributed memory architecture. With a 128-processor TMC CM5, they could ren-
der a 2563 voxel data set at 12 frames per second. It is comparable to the results
obtained on the 16-processor shared memory architecture. Nevertheless, they re-
stricted the utilization of the shear-warp algorithm by allowing only one-degree
rotations to change the viewpoint. Despite of this restriction their algorithm is
not scalable: the speedup is 30 for 128 processors.
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Fig. 3. Data repartition in the intermediate image (20-deg. rotation angle).

Task shaping The two general types of task partitions for parallel volume
rendering algorithms are object partitions and image partitions. In an object
partition, each processor gets a specific subset of the volume data to resample
and composite. The partial results from each processor must then be composited
together to form the image. In contrast, using an image partition each processor
has to compute a specific portion of the image. Each image pixel is computed
only by one processor, but the volume data must be moved to different pro-
cessors as the viewing transformations changes. As a matter of fact, it is very
important not to limit the size of the data volume. In the medical field, stan-
dard volumes are composed of 5122 voxels, which means at least 135 Mbytes
without compression. Thus, we chose to distribute the data on every processor
because the replication for such volumes is impossible on standard machines. All
existing implementations have designed their parallelization using an image par-
tition that takes full advantage of the optimizations in the rendering algorithm.
Moreover, for a shared memory architecture data motion is less significant. The
partitioned image is the intermediate image created during the shear step. Then
the unit of work can be individual pixels, scanlines of pixels, or rectangular pix-
els. In [Lac95b], it is shown that the best shape is scanlines of pixels because it
minimizes the overhead due to decoding the run-length data structure. It also

maximizes the spatial locality both in the intermediate image space and object
space.



6 Frédérique Chaussumier, Frédéric Desprez, and Michel Loi

Load-balancing Given that the fundamental unit of work is a group of con-
tiguous scanlines of the intermediate image, minimizing load imbalances gives
three options: a static contiguous partition, a static interleaved partition and a
dynamic partition. For a shared memory architecture, Lacroute chose to use a
distributed task queue and a dynamic stealing. This solution is too expensive
for a distributed memory architecture. It generates a prohibitive communication
overhead. Consequently for such an architecture Amin et al. determined heuris-
tics based on adaptative load balancing scheme. But because their utilization
restriction that considers only one degree rotations they finally conclude that
they only needed a static load balancing.

Our approach is to implement the Shear-Warp algorithm on a distributed
memory architecture because of the good scalability of this type of architecture.
On the one hand one of our major goals is to achieve real-time performances with
higher resolution data sets (particularly 512%). On the other hand, we believe
it is important not to restrict the user utilization and to allow him to change
arbitrarily the viewpoint. Thus, our new implementation proposes a dynamic
load-balancing that do not depend on the previous rendering.
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Fig. 4. Volume distribution in an image partition.

3.2 Parallelization

The decreasing costs and increasing performance of both computer hardware
and network now offer a great potential for distributed network computing.
Furthermore, one of the major benefits of distributed computing is its scalability
in terms of the amount of computing power and resources available for large-
scale applications. Those are the reasons why we chose to parallelize the shear-
warp algorithm on a cluster of PCs interconnected with a high-speed Myrinet
network from Myricom. Because of the distributed memory architecture, we had



Title Suppressed Due to Excessive Length 7

to determine an explicit data distribution (and redistribution) that minimizes
communication but keeps a good load-balancing.

PO PO 2
P1 1

1 P1
P2 4

N P2
P3 \

P3
Inte.rmediate PROFILE Intevrmediate PROFILE

image image

Fig. 5. Shearing the volume from a to b.

Data distribution Explicit data distribution is a difficult problem when an
image partition is used because the portion of the volume required by a particular
processor depends on the viewpoint. One naive solution is to replicate the data
in every processor’s memory, but this design severely limits the maximum size
of the volume and does not solve the redistribution problem.

To distribute data volume in an intermediate image partition the volume is
first sheared and then distributed by slices orthogonal to the rays. Each processor
can now compute its portion of the intermediate image through its assigned
volume segment. The resulting intermediate images on different processors are
disjoint and can be independently warped. Figure 4 shows a simple intermediate
image partition with 4 processors. The corresponding sheared volume, made up
of 5 slices, is partitioned as illustrated on the figure : processor 3 owns a few
scanlines in the first slice, processor 2 owns scanlines in every slice, ...

Generated communications The main overhead of this algorithm results
from communications of volume data when the volume is sheared. Figure 5 shows
the deformation of the volume and its corresponding intermediate image when
the shear changes from a to b. The generated communications are illustrated in
Figure 6. Every processor receives data corresponding to the shaded scanlines
from its neighbor processors except the first and the last ones.
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Fig. 6. Data received respectively from previous and next processors.

Communication patterns In our parallel Shear-Warp algorithm, we need two
types of communications:

— A gather of partial images into the final image, and
— a personalized all-to-all communication for the data redistribution when the
viewpoint has changed.

We implemented the personalized all-to-all communication in p — 1 steps,
where p is the number of processors, as follows: at each step each processor sends
data to a step-far processor in the increasing processor number and receives data
from a step-far processor in the decreasing processor number. Figure 7 illustrates
this scheme for 4 processors.
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Fig. 7. Personalized all-to-all communication for 4 processors.

Overall Algorithm We implemented the overall algorithm but we only focused
on the data distribution and redistribution and the composition that are written
in italic (that takes most of the computation time).
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Procedure Render()
InitialDistribution()
Foreach viewpoint do
Computation of a part of the shading lookup table (LUT)
Multidistribution of the shading LUT
(* Each processor now owns the whole LUT. *)
(* Each processor owns the parts of each slice *)
(* that are necessary for its parts of computation. *)
Foreach voxels’ slices from front to back do
If | own the data
Composite(data, part_image)
EndFor
image = Warp(part_image)
Gather(image, root)
If p == root
Display(image)
Personalize-all2all(volume)
EndFor
End

4 Dynamic Load-Balancing

The requirement of an arbitrary rotation of the voxels’ cube implies that we
should implement a dynamic load balancing mechanism. As we shown in Fig-
ures 1, 2, and 3, load-balancing strictly depends of the viewpoint.

In an image partition, every processor has to compute a specific portion of the
image. This portion of image results from the projection of the volume data into
this portion of image. Therefore, a naive partitioning of the image that assigns an
equal portion to each processor yields to a bad load-balancing. Furthermore, it
is impossible to determine in a static way the accurate amount of voxels needed
to generate this portion.

Consequently, we used the elastic load-balancing algorithm given in [MR91]
to determine the load and to get a good load-balancing accordingly. This algo-
rithm consists in computing a local partial load for each processor. Then each
processor broadcasts its partial value and adds its value with the ones received.
At this moment, every processor knows the global load. By dividing this global
load by the number of processors, each processor finds its elementary load. Then
every processor has to get the data necessary to its computation.

In the Shear-Warp algorithm, every processor has to compute an array con-
taining its local contribution for each line of the intermediate image. This array
is then broadcasted. Each processor adds the arrays received with its own. The
resulting array contains the computational load repartition for each line of the
intermediate image. They can then obtain the global load. By linearly distribut-
ing the intermediate image, they can balance the load through the processors.
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5 Overlapping communication with computation

In order to reduce the overhead due to data redistribution, we studied the possi-
bility of introducing communication overlap in the compositing phase. Because
of the irregularity of the application, this presents a considerable challenge.

In addition to the irregular communication and computation patterns of the
shear-warp algorithm, we had to deal with communication layers. As a mat-
ter of fact, none of our implementations of the MPI standard provide a real
asynchronous communication routine.

5.1 Communication and computation patterns

So far every communication generated by the data redistribution is done before
the volume composition as shown by the following pseudo-code:

For k=0, nbSlices do
For step=0, nbProcesseurs do
If must-send(k, me+step)
send(block _scanlines, me+step)
If must-receive(k, me-step)
receive(block _scanlines, me+step)
EndFor
EndFor

For k=0, nbSlices do
Composition(block _scanlines(k))
EndFor

Consequently it is possible to overlap the communication of the slice k& + 1
with the composition of the slice k. Figure 8 shows an example of communication
and computation pattern with 4 processors and 3 slices. Without overlap, the
processor waits for each slice for every processor’s data before starting the com-
putation. It is represented by the case a. The first overlap step (case b) consists
in starting the computation of a slice as soon as every processor sent its corre-
sponding data. Then in the figure, we have improved the total execution time of
A. The second overlap step (case ¢) waits for a processor to send its data and
begins immediately its computation corresponding to the received part of slice.
Then in the figure, we have improved the total execution time of B (B > A).

5.2 Experimental platform

The cluster of PCs we used has 8 PowerPC 604e clocked at 200 Mhz intercon-
nected with a high speed network Myrinet.

The communication layer BIP (Basic Interface for Parallelism) [Pry98] im-
plemented on the Myrinet network delivers the maximal performance achievable
by the hardware to the application. A Myrinet host interface is based on a LANai
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Fig. 8. Two possible ways to overlap communication with computation.

chip (containing a processor, a packet interface and a DMA) and SRAM mem-
ory of 128 KB. With the BIP communication layer most of the communication
management is handled by the LANai.

The LAM implementation of the MPI standard for a cluster of PCs does
not provide communication overlap whereas BIP provides communication over-
lap thanks to its simple interface and to the communication processor (LANai).
Figure 9 and 10 illustrate respectively the capability of the MPI standard and
native BIP to overlap communications by computations on our target machine.
The test program is executed by two processors. They first exchange data and
execute some computation. The exchanged message sizes vary from 0 to 3 KB.
The computation time for both blocking and non blocking versions is obviously
the same. For both MPI and native BIP execution, we first execute blocking
communications, then we deduce the ideal curve and execute non-blocking com-
munications. Using MPI, the non-blocking curve is comparable to the blocking
curve. With native BIP the non-blocking curve is comparable to the ideal curve.

5.3 Implementation

The BIP interface only allows one communication at a time to take a full ad-
vantage of the Myrinet network. Because of this restrictions, we only could im-
plement the second possibility of overlapping presented in Section 5.1.
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6 Results
6.1 Efficient load balance

Figures 11 and 12 compares respectively the workload of each processor for an
execution with processors respectively in the case of a static allocation and a
dynamic redistribution.

Composition time for each processor

Processor number

Fig.11. Workload of each processor: static allocation.

o 1 2 3
Processor number

Fig. 12. Workload of each processor: dynamic redistribution.

Using a static allocation, we distribute the slices with a block-cyclic distribu-
tion the lines. Figure 11 shows that the central processors have the whole load.
On the contrary, with the dynamic load balancing algorithm, the data is well
balanced. The slight variations in Figure 12 are due to the granularity of the
data.
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6.2 Scalable composition

In our parallel implementation, we focused on the compositing step. We first
implemented the compositing step using blocking MPI primitives. The very bad
scalability of this implementation, as shown in the Figure 13, is due to data redis-
tribution overhead. We therefore decided to implement communication overlap.
The figure shows that the implementation using asynchronous communications
is almost perfectly scalable. We have a very good overlap of the communications
because of the BIP layer and because we could find independent computation
and communication in the Shear-Warp algorithm.
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Fig. 13. Speedup of the compositing phase.

Those curves are obtained on a colored high resolution dataset, 5123 voxels.
The total execution time for such a dataset is 1.5 s on 4 processors.

7 Conclusion

The first goal of this application is to provide to physicians a good quality
and resolution visualization from medical datasets in real-time with a low-cost
distributed memory machine.

In this paper we have presented an high performance and scalable version of
the Shear-Warp algorithm implemented on a cluster of PC. Our parallel approach
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of the Shear-Warp algorithm improves the interactivity of the application by
using an adapted load balancing algorithm and by overlapping communication.
It then allows the user to get a 3D representation with any viewpoint in real-
time. Even with a sparse data-structure and irregular communication patterns,
we are able to get performances that are comparable to implementations on
“classical” parallel machines.

The optimizations presented in this paper can also be used in other irregular
applications, and thus we would like to create a library to overlap communica-
tions and computations for this kind of applications.
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