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Abstract

Scilab, developed at INRIA in the Méta2 project
is a software similar to Matlab that allows scientific
applications to be developed using an interactive en-
vironment on a workstation running Unix or Win-
dows. In this paper, we present the current version of
Scilab,,, a extension of this software that supports
the execution of parallel jobs within Scilab. Using
simple commands and the same interface as Scilab,
Scilab,, allows users to start Scilab on a paral-
lel machine or a network of workstations (NOWs),
therefore giving access to the computation power and
huge aggregate memory sizes. From the Scilab in-
teractive environment, users can spawn several other
Scilab processes, executing remote Scilab scripts,
which can then communicate between each other. Fi-
nally, processes can print/plot their results. There are
many research directions around this project and we
give an overview of the current and future develop-
ments.

Keywords: Scilab, Parallel Machines, NOWs,
Meta-computing, PVM, Parallelization Tools, Nu-
merical Applications.

1 Introduction

Scilab [12, 16] is a scientific software package for nu-
merical computations in a user-friendly environment.
Scilab is well spread in the scientific community and
its popularity has been growing. Scilab is available
on several platforms and runs under different types
of operating systems (Unix, Linux, Windows). There
are seven main reasons for its success: (1) the lan-
guage syntax is simple and easy to learn (Matlab-
like syntax); (2) Scilab includes hundreds of built-in
math functions and provides a large choice of built-
in libraries: numerical algorithms, automatic, linear
algebra, signal processing, network analysis and op-

timization, linear system optimization; (3) it offers a
graphical interface; (4) it includes a high level lan-
guage with a syntax similar to Fortran 90 for matrix
notations. Basic matrix manipulations such as con-
catenation, extraction or transpose are immediately
performed as well as basic operations such as addition
or multiplication. Scilab also allows manipulations
of high level data structures such as polynomials, ra-
tional numbers, sparse matrices, multi-variables sys-
tems, lists. In one or two lines of code, this language
can express a computation that requires dozens of
lines of C or Fortran; (5) Scilab can easily be ex-
tended with modules developed by users; (6) Scilab
can easily be interfaced with other languages like C,
Fortran or even Maple or Mupad [14]; (7) Scilab can
generate Fortran programs.

One possible drawback of using a sophisticated in-
terpreter is that such a language can not give perfor-
mances as good as classical compiled languages. How-
ever the performance loss (between 1 and 10 times)
should be opposed to the easiness of development. All
the advantages of tools like Matlab can be found in
Scilab. It is fairly easy to modify the code, changes
the size of the data, print variables, or to modify the
problem formulation interactively. The prototyping
of code is enhanced by this important feature. More-
over, for large grain applications, the interactive as-
pect of Scilab is not a limitation.

Scilab should be considered as a “real” language
allowing the development of applications. Problems
developed by scientists using Scilab have long execu-
tion times and a medium or coarse grain computation.
Nowadays, many scientists tend to use a great vari-
ety of distributed computing resources such as mas-
sively parallel machines, network, cluster of worksta-
tions even SMP machines and pile of PCs. A Scilab
user who would like to scale his/her application by
going to a parallel machine or a network of worksta-
tions will not be able to use the Scilab language and



he/she will have to necessary re-program the whole
application in C or Fortran. Today’s supercomputers
still lack of simple user interfaces and access proce-
dures. Parallel computing can then become tremen-
dously tough to use and debug. Moreover, further
developments on applications will have to be coded
in C or Fortran. Since the investment for a researcher
or scientist to use the supercomputer facilities in the
traditional way is notoriously big, the user has gener-
ally to choose between two alternatives: performances
(in terms of computational and memory resources) or
the ease of use. In this paper, we describe the current
version of Scilab,, and give our view of the future of
this project which has been specifically designed and
conceived to efficiently use such a diverse computa-
tional environment and to tackle the problems raised
by this new approach to scientific problem solving on
a “pool” of computational resources.

The remainder of this paper is organized as fol-
lows. Section 2 presents the Scilab,, project. Sec-
tion 3 reviews the current version of Scilab,,. Sec-
tion 4 addresses actual and future developments of
the Scilab,, project. Finally, we present our con-
clusion in section 5 where we discuss possible future
areas of investigation.

2 Aim of the Scilab,, project

Obviously, the benefit of the interactivity of Scilab is
lost if the problem takes several days to run. With the
coming of less expensive parallel machines [3, 15] and
the proliferation of parallel computers in general [9],
it is natural to wonder about combining the user-
friendliness and interactivity of mathematical soft-
ware packages such as Scilab with the computing
power of the parallel machines.

The first aim of the Scilab,, project is to offer
high performance to Scilab users. Our first target
program paradigm is message passing and we choose
to first include a PVM interface in the last version of
Scilab. We fix ours choice on PVM since we wanted
to be able to manage an heterogeneous network of
machines and to dynamically spawn processes. More
precisely, our first goals are to

1. keep the Scilab environment as-it-is (including
its interactive behavior),

2. provide to the user a high level language for the
development of parallel applications and to guar-
antee their portability across platforms, from
heterogeneous networks of workstations to par-
allel machines,

3. offer interesting performances and to allow
coarse grain applications to be started from this
environment,

4. provide transparent interfaces for several numer-
ical libraries (both sequential and parallel).

Using Scilab,/, the user will keep its Scilab en-
vironment but he/she will have access, more or less
transparently, to the performances and huge memory
sizes of parallel processors and NOWs.

We would like also to have several levels of trans-
parency within the same environment. Users of par-
allel machines have different programming skills and
we can not expect a user to be a parallel program-
ming expert or to prevent him/her to access low level
functions to get the best performances. To be able
to satisfy almost every kind of user, we would like to
provide the following levels of functionalities:

Expert level. The user wants to program his/her
parallel machine with message passing and li-
braries by writing a “regular” PVM or Scal.A-
PACK code. He/She does not want to bother
with matrices allocations and wants to use this
tool. But he/she wants to manage everything at
the lowest level available. For this kind of user,
we just provide interfaces to the communications
and computation libraries.

Intermediate level. This kind of user wants to
have a transparent access to the libraries as much
as possible but he/she is also concerned by the
performances of his code. He/she has a good
knowledge of parallel computing and would like
to program his/her applications using message
passing and computation libraries, but in a more
transparent way.

Scientist level. Parallel comput-what? No way! I
just need a 45 Gflops workstation with 30 GBytes
of memory. Could you provide me with such PC?
Everything is hidden in Scilab. The tool decides
itself whether or not it should (re)-distribute the
data, start new processes, and so on.

3 Scilab,,;: Today’s
implementation

3.1 Integration of parallel libraries

In order to keep good portability, interoperability and
efficiency, we have chosen to use as much as possible
portable libraries like PVM, BLAS, LAPACK and
ScaLAPACK. Today’s version of Scilab,, (Version
1.0) is released in Scilab (Version 2.4) and includes
the PVM [11] package (Version 3.3.7). An interface
for PVM has been included in Scilab itself. With
this interface, a Scilab,, instance is able to com-
municate and interact with other Scilab,, instances
and the user of Scilab,, can send data of any types
(including matrices, lists, functions...) using PVM
commands. This first low-level interface provides a
tool to easily run parallel algorithms without losing
the power and ease of Scilab. Figure 1(a) shows a
Scilab,, session.
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Figure 1: Today’s Scilab,, architecture.

The second low-level interface provided by
Scilab,, is an interface to several portable paral-
lel algebra packages, at the moment BLACS, PBLAS
and ScaLAPACK. Figure 1(b) illustrates the linear al-
gebra architecture. This allow the user to distribute
matrices, unfortunately by hand, and allows him/her
to perform calls to parallel functions and to write par-
allel scripts. Because of the low abstraction degree of
all this interfaces, it provides a great flexibility, but
in the other hand it gives a relatively poor comfort
when using it interactively and for fast prototyping.
We will see in section 4 how we will enhance the com-
fort of Scilab,.

3.2 Performances

The goal is not to present here all the speedups of the
several linear algebra libraries, but just to compare
the overhead introduced by the interface when using
message passing between several Scilab processes.
Figure 2 plots the the performances of the classical
“ping-pong” tests. The x-axis represents the message
size in bytes and the y-axis the time to execute a
round trip. The tests were performed on an “pile of
PCs” interconnected by a Myrinet switch. The curve
plotted with diamonds (— ¢ —) is obtained by send-
ing a sub-matrix (sub-matrix notation, A[1:n,1:n]).
The curve plotted with squares (—0—) is obtained
by using the same PVM subroutines but called from
a C-program. Finally, the curve plotted with crosses
(— + —) is obtained by sending a full matrix, that is
when the user gives the name of the variable to send
and not a sub-part of it. Two important points: (1)
when the user sends a full matrix, performances ob-
tained by Scilab,, are as good as a C-program, and
the interpretation of the call does not deteriorates the
performances; (2) the overhead introduced by sending
submatrices is due to memory copies that take place
in both the sender and receiver Scilab processes since
an expression like send(A(1:2:100,2:2:100),...)

will send a 50 x 50 matrix which is not contiguous in
A, so the send routine must copy all the elements in a
contiguous buffer before sending the data. The same
problem may arise in the receive process since the
expression B(1:6:300,1:6:300) = recv(...) is a
valid one. Note that the second method which con-
sists in sending a matrix by giving its name was re-
tained in the interface between Scilab,, and the sev-
eral parallel linear algebra packages for two major
reasons: (1) it avoids memory copies and thus it ob-
tains better performances; (2) it keeps the same API
as described in [7] and [8] such that the user can refer
to several existing technical reports and user guides.

4 Actual developments and
future directions

4.1 Network-enabled solvers

Due to the progress in networking, computing inten-
sive problems in several areas can now be solved using
networked scientific computing. In the same way that
World Wide Web has changed the way that we think
about information, we can easily imagine the types
of applications we might construct if we had instan-
taneous access to a supercomputer from our desk-
top! The Scilab,, project is developing basic soft-
ware infrastructure for computations that integrate
geographically distributed computational and infor-
mation resources.

This approach leads us to integrate an interface
to NetSolve [4] which is a client-server application
that enables users to solve complex scientific prob-
lems remotely. The system allows users to access
both hardware and software computational resources
distributed across a network. NetSolve searches for
computational resources on a network, chooses the
best one available, and using retry for fault-tolerance
solves a problem, and returns the answers to the user.
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Figure 2: Performances and overhead of the communication in Scilab,,.

A load-balancing policy is used by the NetSolve sys-
tem to ensure good performance by enabling the sys-
tem to use the computational resources available as
efficiently as possible. The Scilab-NetSolve interface
allows the user to send blocking and non-blocking re-
quests to the NetSolve agent which plays the role of
a resource broker. When sending a non-blocking re-
quest, the user gets back the control immediately and
can do some more work in parallel and check for the
completion of the request later.

4.2 Full Programming Paradigms

At the moment, Scilab // supports only one program-
ming paradigm, called remote computing paradigm
in [5]. That is, both program (Scilab scripts) and
data are sent to the nodes of the parallel virtual ma-
chine which returns the results after execution of the
scripts. We are currently working on a full interactive
way to develop parallel application in Scilab,,. To
be able to do this, the user choose at startup-up to
be in a mode where Scilab processes on the machine
are waiting for Scilab commands (some of them be-
ing data-parallel ones, like for example linear algebra
operations). Figure 3 presents the overall architecture
of the future version of Scilab which handle automatic
distribution, load-balancing and fault-tolerance.

4.3 Automatic Distribution and Re-
distribution

In order to support the previous interactive mode,
and to use parallel numerical libraries such as ScaL.A-
PACK, Scilab,, requires a distribution of the data
on the target parallel machine. The distribution has
to be carefully chosen in order to get the best perfor-
mances. The user of Scilab,, may just want to type
[[,u] = LU(a) in his/her Scilab interface instead of
dozen of lines to distribute matrices and gather the

results. The goal is to hide the data distribution with-
out distributing and gathering matrices before and af-
ter each call. To do this, we create a new Scilab type
101, for distributed real or complex constant matriz.
Thus, in the interactive mode, based on the types of
the parameters involve in a expression, we can choose
the data distribution on-the-fly, depending of the ma-
chines load, the algorithm and the data in place.
Depending of the costs of computation routines and
the parameters of the target machine (bandwidth,
latency, processor’s speed), it is sometimes interest-
ing to redistribute the data between different calls.
Again, the use of redistribution points has to be
carefully chosen to avoid a decrease of performances.
We are working on a project called ALaSca !. This
project aims at providing heuristics and algorithms
for the computation of a set of (re)distributions in
case of a graph of Scal,LAPACK routines calls. These
algorithms will be directly used in Scilab,,.

4.4 More Numerical Libraries

We would like to provide an access to many scien-
tific libraries for the user of Scilab,,. Sparse matri-
ces are widely used in diverse scientific computation
fields such as structural and integrated circuit anal-
ysis, computational fluid dynamics and, more gener-
ally, as the solution of partial differential equations.
For example, Scilab does not provide many features
to handle sparse matrices. Many libraries exist in
the public domain such as Aztec, PETSc, SparsKit,
P-SparseLLIB which implement iterative methods, or
SPOOLES, SuperLU, PSPASES which implement di-
rect methods and efforts are done to provide standard
interface [10].

Our aim is to provide access to a number of those
sparse matrix numerical libraries. Having such an ac-

1URL: http://www.ens-1lyon.fr/~desprez/FILES/RESEARCH/SOFT/ALA!
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Figure 3: Processes architecture of the LAN version of Scilab,.

cess will help to adapt the full range of Scilab dense
matrix operations to the sparse case. At the same
time, parallelism will be added to those operations
while using the best sparse matrix algorithms imple-
mented recently. An accessibility problem is raised
here. We wish to offer access to more libraries at the
same time and in this case we will face problems sim-
ilar to ones encountered in the NetSolve project: the
uniformity of access [6].

As a short-term goal, we will concentrate on ele-
mentary sparse matrix operations, such as addition
and multiplication, and on direct methods for solv-
ing sparse linear systems of equations. The direct
methods for solving linear systems of equations in-
volving sparse matrices contain four phases: compute
fill-reducing ordering, perform symbolic factorization,
compute numerical factorization and solve triangular
systems of equations.

Disposing of some knowledge of the linear system
can be important when trying to obtain the best per-
formance out of a library. For example, there ex-
ist different ordering methods (SPOOLES [2] imple-
ments them). When the user is knowledgeable of de-
tails of his problem, he has the opportunity to choose
the best ordering available.

The four phased process previously mentioned can
be complicated for a novice user. To help with such a
case, we will offer more levels of functionalities. For
example, a novice user could employ some so-called
“wrapper objects” that we can include in the imple-
mentation. Those objects are similar to the ones pro-
vided in SPOOLES, which offer a simplified approach
of the library. Moreover, we wish to offer a completely
transparent interface to the user. This interface con-
sists of normal Scilab operations on matrices. When
calling it, the user is hidden from the details of sparse
algorithms or parallelism implementation.

In the more distant future, we intend to implement
higher-level sparse matrix operations such as iterative
methods for linear systems. One interesting feature
will be to let the tool choose the library for you. This
is a key issue when dealing with sparse matrices. The
method chosen for solving a problem depends on the

values of the matrix involved. The automatic selec-
tion of a method is not trivial. Of course, we can
make a choice between several implementations of a
given method.

A goal at least as important as the previous ones
is to allow a Scilab user to visualise sparse, unstruc-
tured, and even extremely large matrices. We intend
to do this by integrating a matrix visualization tool,
like Emily [13] or showmap in SMMS [1]. These tools
offer a several views of a matrix ranging from a single
element to the whole matrix. Moreover, they offer
access to multiple colormaps in order to extract dif-
ferent features and structures of the same matrix.

4.5 Load Balancing

One critical issue of parallel computing on heteroge-
neous network of workstations is the load-balancing.
A first load-balancing can be used at the start of one
execution by taking informations about the state of
the parallel virtual machine. At run-time, the load-
balancing can be changed depending of the load of
the different machines. We can of course make use of
load-balancing of software like but a load-balancing
strategy tuned for our applications will of course be
more efficient.

There are two key issues in this optimization phase.
First we must be able to know when load-balancing
must occur. Thus we need to know the state of a
given machine and network traffic. The second issue
is how to balance the load. We see two steps. First,
before starting a new computation phase, Scilab,,
should be able to choose the “perfect” parallel virtual
machine and avoiding processors too loaded. Second,
during the execution of a phase, we should be able
to migrate a task and its data. This is of course not
really easy when using a given parallel library.

5 Conclusion

In this paper we have given an overview of the
Scilab;, project which main goal is to bring high
performance to Scilab users and transform a Scilab



session into a meta-computing one, which means, ease
of use and access to possibly remote computational
resources. Scientists want to spend their time doing
science; they are generally not interested fooling with
the nuts and bolts of computers and accompanying
technologies.

As stated in section 4, several possible extensions
of this work are open to investigation. Main open
researches concern automatic distribution and redis-
tribution even if a lot of works has been done, es-
pecially for the High Performance Fortran language.
This problem is well known to be a difficult problem
and deserve further study, especially for interactive
parallel computing.
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