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Chapter 1

Introduction

Grid is a type of parallel and distributed system that enables the sharing, selection,
and aggregation of geographically distributed “autonomous” resources dynamically
at runtime depending on their availability, capability, performance, cost, and user’s
quality-of-service requirements. Applications that are submitted to grid are special
class of distributed applications that have high computing and resource requirements.

Grid platforms are very promising but are very challenging to use because of their
intrinsic heterogeneity in terms of hardware capacities, software environment and
even system administrator orientations. To facilitate the use of grid platform, an ex-
tension of classical approach Remote Procedure Call (RPC) is used, called “GridRPC”.
Environments based on this concept are a subset of Network Enabled Server (NES)
environments [65]. End-users submit their application to grid platform through NES
environments as these environments hide all the complexities of the grid platform
from users by providing easy access to the grid resources. Numerous NES environ-
ments already exist. We present a survey of the most prevalent NES environments (
NeOS [11], NetSolve [9], Nimrod [3], Ninf [70], PUNCH [53], and WebCom [67]) in
Chapter 2 .

Basically NES environment have five components. Clients provides user interface
and submit requests to execute libraries or applications to servers. Servers receives re-
quests from clients and execute libraries or applications on their behalf. The Database
contains the status (dynamic and static information) of the monitored resources. Mon-
itors dynamically store and maintains the status of the available computational re-
sources in the database. The Scheduler selects a potential server from the list of servers
maintained in the database by frequent monitoring and maps client requests to that
server.

The main objective of the thesis is to improve the performance of a NES environ-
ment so as to use these environments efficiently. Here efficiency means the maximum
number of completed requests that can be treated in a time step by these environments.
A completed request is one for which a response has been returned to the client. We
calculate the environments efficiency in terms of throughput (number of completed
requests per time unit), because the traditional objective of makespan minimisation is
NP-hard in most practical situations [76], [12]. Instead of absolute minimisation of

3



4 CHAPTER 1. INTRODUCTION

the execution time, we look at asymptotic optimality by searching an optimal steady
state scheduling techniques. In steady-state scheduling techniques [16], startup and
shutdown phases are not considered and the precise ordering and allocation of tasks
and messages are not required. Instead, the main goal is to characterize the average
activities and capacities of each resource during each time unit.

To achieve the thesis objective, the main goal is to remove the obstacle that cause
the hindrance in the efficiency of the environments. The very first problem which
comes into picture is related to the applications scheduling on the selected servers.
NES environments are able to find the computing power and the capacity storage nec-
essary for the execution of an application, but it remains to determine a scheduling that
offers the greatest possible effectiveness on the servers. NES environment generally
use the Minimum Completion Time (MCT) on-line scheduling algorithm where-by all
applications are scheduled immediately or refused. This approach can overload inter-
active servers in high load conditions and does not allow adaptation of the schedule
to task dependencies. Thus, we first studied the scheduling techniques that can be
adopted for scheduling tasks on NES environment. As a result, we present algorithms
for the scheduling of the sequential tasks on a NES environment in Chapter 3. We
mainly discuss a deadline scheduling with priority strategy that is more appropriate
for multi-client, multi-server scenario.

Even though already some methods and technologies have been added to the ba-
sic NES environments to improve the performance like development of good perfor-
mance forecasting tools, hierarchical arrangements of NES’s components, etc. But still
there are some important fields that can be improved to increase the efficiency of the
NES environments as stated above, by improving the scheduling techniques used at
server level to schedule the assigned tasks.

Another important factor that influence the efficiency of the NES environments is
the mapping style of the environment’s components on the available resources. Gen-
erally components of these environments are mapped on the available resources as
defined by the user or environment’s administrator. We call this process as deployment.
Their exist some deployment tools, that deploy the NES’s components on selected re-
sources. In Chapter 4 we present a survey of some deployment tools.

To show that the efficiency of the environments depends on the arrangements of
their components on the available resources (nodes), we did experiments. For ex-
periments, we used an hierarchical Network Enabled Server called DIET (Distributed
Interactive Engineering Toolbox). The DIET scheduler can be hierarchically distributed
or used in a centralized fashion. Detailed overview of DIET is provided in Chapter 5.
Figure 1.2 shows the experimental results performed with DIET. These experiments
were performed using 151 nodes of the Orsay cluster of Grid’5000, a set of distributed
computational resources in France. Depending on the available number of nodes, nu-
merous type of deployments are possible. For example, some of the possible deploy-
ments with 150 nodes are shown in Figure 1.1. For the experiment we tested two
deployments (a and b) shown in Figure 1.1. In the first deployment, one node is ded-
icated to a centralized scheduler that is used to manage scheduling for the remaining
150 nodes, which are dedicated computational nodes servicing requests. In the sec-
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Figure 1.1: Some of the possible deployments with 150 nodes

ond deployment, three nodes are dedicated to scheduling and are used to manage
scheduling for the remaining 148 nodes, which are dedicated to servicing computa-
tional requests. In this test the centralized scheduler is able to complete 22,867 requests
in the allotted time of about 1400 seconds, while the hierarchical scheduler is able to
complete 36,307 requests in the same amount of time.

The distributed configuration performed significantly better, despite the fact that
two of the computational servers are dedicated to scheduling and are not available
to service computational requests. At least for the DIET toolkit, and most likely for
other schedulers as well, distributing the task of scheduling can improve performance
in large resource environments. However, the optimal arrangement of schedulers is
unknown. Should we dedicate four machines to scheduling in the above experiment?
Perhaps ten? It is clearly impossible to test all possible arrangements for a given envi-
ronment.

For the above explained experiments we used DIET deployment tool called GoDIET.
And we gave the deployment hierarchy in the form of an XML file with all the re-
quired information like, which resource is connected to which, path of the binary files
etc. Overview and performance evaluation of GoDIET tool is present in Chapter 6.

Like GoDIET, all existing deployment tools deploy the components on the given
resources as defined by the users or NES’s administrator, with all the required in-
formation. However, the deployment tools does not allow the physicists, chemists,
biologists, etc to deploy middleware according to their applications simply on grids:
the user who wants to deploy his application must be expertise in the field of selecting
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Figure 1.2: Comparison of requests completed by a centralized DIET scheduler versus
a three agent distributed DIET scheduler.

the appropriate resources of the grids based on their application type, characteristics
of middleware component and available resources. Moreover, the user should select
the resources according to the application, should know how to carry out all the file
transfers, implementation of the configuration files and the launching of remote tasks
for each selected resource, and then finally submit the application to the deployed
platform.

Even if, the deployment plan of NES’s components is very important factor to influ-
ence the throughput of a NES environment, yet neither theoretical nor practical frame-
work exist, to find the best organization of the components. Organizing the nodes in
an efficient manner and using the nodes’ computation power efficiently is out of the
scope of end users. In recent years much work has been focused on the design and
implementation of the NES environments but neither a tool nor any algorithms have
been developed for an appropriate mapping of environment’s components to the re-
sources. Thus a planning is needed to arrange the resources in such a manner that
when NES’s components are deployed on the arranged resources, maximum num-
ber of requests can be processed in a time step by the NES environment. We called
this planning as deployment planning. Even, environmental designers often note that
deployment planning is an important problem but still enough work is not done for
efficient and automatic deployment.

To the best of our knowledge, no deployment planning algorithm or model has
been given for arranging the NES’s components in an efficient way. The questions
such as “which resources should be used?”, “how many resources should be used?”
and “should the fastest and connected resource be used for middleware or as a com-
putational resource?” remained unanswered.



7

In this thesis we gave the solutions to these questions in Chapters 7, 8, 9, and 10.
We also gave an initial idea to develop a tool based on our automatic deployment
planning models in Chapter 11.
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Chapter 2

Network Enabled Server
Environments

2.1 Introduction

Among the different approaches for porting large scale applications on grids, the
client-server computation model is at the same time efficient and simple. Network
Enabled Server (NES) environments provide users with an easy access to distributed
resources across the Internet. NES environments evolved only a decade ago, when
programming paradigms and core middlewares such as ORB, RMI, RPC and web-
services, laid a strong foundation for distributed resource connectivity. Some of them
make use of a multiple tier structure in which clients, agents, and servers communicate
efficiently and the most appropriate resource for a computation request is selected.

The main goal of NES environments is to provide access to the end users (biolo-
gists, mathematicians, astrophysicists, etc.) the computational facilities via potential
servers to solve their problems. These problems are large (i.e., require numbers of
CPU hours) and cannot be solved using a single machine. They also require multiple
potential servers during an application lifetime, so as to find the result in appropriate
time, or using some specific feature or library. NES environments provide access to
high computing power and large storage capacity at low cost.

These environments are popular because they are easy to setup. They can be used
in front of a single server or using supercomputers connected through the Internet.
They are accessible via various methods (Web browsers, C, C++, Fortran or Java pro-
grams, libraries, Problem Solving environments such as Matlab or Scilab, ...).

Theoretically all the NES environments have the same goal, but they are many and
differ according to the underlying models they adopt and the features they provide.
In this chapter six NES environments are presented in a comparative manner. These
environments are NeOS, NetSolve, Ninf, Nimrod, PUNCH, and WebCom. Another
NES environment called DIET (Distributed Interactive Engineering Toolbox), which
we use for validating our theoretical concepts, is elaborately presented in Chapter 5.

11
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2.2 Other environments

In addition to the NES environments presented in this chapter, other middleware in-
frastructures are available to execute remote jobs over the grid. Some of them are based
on cycle steeling concept unlike NES environments, which are dedicated servers. Some
systems that are dedicated but does not provide scheduling system, job management
services, queueing mechanisms as provided by NES environments. In this section a
small overview of the most common job management systems and most common grid
systems is given for the completeness.

Condor1 is a job management system. Although Condor provide a scheduling sys-
tem, job management services, queueing mechanism, it is based on cycle steeling con-
cept unlike NES environments, which use servers that are dedicated to some specific
applications. Condor [82] is a specialized workload management system for compute-
intensive jobs. Like other full-featured batch systems, Condor provides a job queue-
ing mechanism, scheduling policy, priority scheme, resource monitoring, and resource
management. Users submit their serial or parallel jobs to Condor, which in turn places
them into a queue, chooses when and where to run the jobs based following a policy,
carefully monitors their progress, and ultimately informs the user upon completion.
Condor is the product of the Condor Research Project at the University of Wisconsin-
Madison. Most flavors of Unix are supported, as well as Windows XP/2K. Condor
also provides a platform for other systems to be built upon it using its core services.

XtremWeb [23] is a project developed at University of Paris-Sud, France. XtremWeb2

is a software platform designed to serve as a substrate for global computing experi-
ments. XtremWeb uses CPU idle time for task execution. XtremWeb is intended to
distribute applications over a set of hosts using cycle stealing scheme and particularly
focuses on multi-parameters applications which have to be computed several times
with different inputs and/or parameters, each computation being fully independent
from each others. Most flavors of Unix are supported, as well as Windows and MacOS-
X.

Globus system is a dedicated grid system but does not provide scheduling sys-
tem, job management services, queueing mechanisms as done by NES environments.
Globus [45] is a grid toolkit to build computational grids and grid-based applications.
The Globus Toolkit acts as a glue to integrate various resources (such as Desktop PC’s,
clusters, supercomputers, databases, visualization instruments, etc.) under different
domains of interests called Virtual Organizations. Virtual Organizations are islands of
domains where researchers are working under common interests. This toolkit is being
developed by the Globus Alliance 3 and many other collaborators around the world.
There are many systems built on top of Globus utilizing the services of Globus like
Ninf-G, Nimrod-G, and Condor-G.

JiPANG (Jini-based Portal Augmenting Grids) 4 is a collaborative work with Indi-

1http://www.cs.wisc.edu/condor/
2http://www.lri.fr/ fedak/XtremWeb/
3http://www.globus.org/alliance/
4http://ninf.is.titech.ac.jp/jipang/
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ana University, Electrotechnical Institute, Tokyo Institute of Technology, and Univer-
sity of Tennessee. JiPANG is a portal system and a toolkit which provides uniform
access interface layer to a variety of grid systems, and is built on top of Jini distributed
object technology. JiPANG performs uniform higher-level management of the com-
puting services and resources being managed by individual grid systems such as Ninf,
NetSolve, Globus, etc. In order to give the user a uniform interface to the grids JiPANG
provides a set of simple Java APIs called the JiPANG Toolkits, and furthermore, al-
lows the user to interact with grid systems, again in a uniform way, using the JiPANG
browser application.

2.3 Characteristics comparison of NES environments

In this section we compare and contrast six NES environments according to their char-
acteristics under different sections. The sequence of these NES environments is in a
alphabetic order NeOS, NetSolve, Nimrod, Ninf, PUNCH, and WebCom. Some char-
acteristics are not present in all NES environments that we are presenting, so the re-
spective sections are not described.

2.3.1 Development

Development of NES environment has been done across the world for many years.
These NES environments have been a research development of many research do-
mains and are being developed using different programming technologies.

2.3.1.1 NeOS

Network-Enabled Optimization Server [41] is developed at the Argonne National
Laboratory. The first version of NeOS Server was available in September 1995 and the
latest version5 is compatible with Win 9x/XP and all flavors of Unix. NeOS implemen-
tation and interfaces are written in Tcl/Tk, Java and Kestrel. NeOS is an environment
for solving optimization problems over the Internet.

2.3.1.2 NetSolve

Network-enabled Solver-based [29] system is developed at University of Tennessee,
Knoxville. It 6 is available for all popular variants of the UNIX operating system,
and part of the system are available for the Microsoft windows platforms. The first
version was available in January 1996. The NetSolve system is implemented using
the C programming language, with the exception of the thin upper layers of the client
API that serve as environment specific interfaces to the NetSolve system. NetSolve is
a client-server system that enables users to solve complex problems remotely.

5http://www-NeOS.mcs.anl.gov/NeOS/
6http://www.cs.utk.edu/netsolve

http://www-NeOS.mcs.anl.gov/NeOS/
http://www.cs.utk.edu/netsolve
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2.3.1.3 Nimrod

Nimrod [4] is developed at School of Computer Science and Software Engineering
Monash University. It came into picture in August 1995. It is implemented in the
C language. There are different flavor of Nimrod: Nimrod-G, EnFuzion, Nimrod-O,
Active Sheets and Nimrod Portal. EnFuzion 7 and all other flavors of Nimrod 8 are
available. Nimrod is a tool for performing parametric studies and for job submissions
across loosely coupled workstations.

2.3.1.4 Ninf

Ninf [5] is a collaboration product of AIST, University of Tsukuba, Tokyo Institute of
Technology, Real World Computing Partnership, Kyoto University and NTT Software
Inc. Ninf 9 projected in the year 1994. Ninf is built using C and C++ languages. There
are three flavors of Ninf: Ninf Portal, Ninf-G and Ninf-C. The Ninf Portal is an au-
tomatic generation tool for Gird Portals. Ninf-G directly accesses resources on grid
managed by the Globus Toolkit. Ninf-C itself does not have any facility to directly
access grid, although it can indirectly access via Condor-G. Ninf is a client-server RPC
based system for large scale scientific computing.

2.3.1.5 PUNCH

Purdue University Network Computing Hubs [54] is developed at Purdue University,
USA. PUNCH 10 is compatible with Win 9x/XP and all flavors of Unix. PUNCH is a
demand-based network-computing system that allows users to access and run existing software
tools via standard world-wide web browsers. Tools do not have to be written in any particular
language, and access to source and/or object code is not required.

2.3.1.6 WebCom

WebCom [68] is developed at Centre for Unified Computing, Cork, Ireland. WebCom
project was started in the year 1996. The grid enabled version of WebCom is WebCom-
G, where "G" stands for "Grid". It is available 11 for authorized users. WebCom-G is
implemented in Java and is compatible with Win 9x/XP and all flavors of Unix and
Linux.

Analysis
The Development of various Network enabled Server systems have been presented.
These environments consider a variety of application domains and employ multiple

7http://www.axceleon.com/
8http://www.csse.monash.edu.au/~davida/nimrod.html/downloads.htm
9http://ninf.apgrid.org/packages/welcome.shtml

10http://punch.purdue.edu/HubInfo/presentations/1999/iupui.html
11http://www.cuc.ucc.ie

http://www.axceleon.com/
http://www.csse.monash.edu.au/~davida/nimrod.html/downloads.htm
http://ninf.apgrid.org/packages/welcome.shtml
http://punch.purdue.edu/HubInfo/presentations/1999/iupui.html
http://www.cuc.ucc.ie
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programming technologies. Earlier systems employed C and C++, recent years Java is
becoming a more popular implementation language.

2.3.2 Architecture

The necessary components for a basic NES environment are Client, Server, Database,
Monitors and Scheduler. Clients provide user interface and submit requests to execute
libraries or applications to servers. Servers receive requests from clients and execute
libraries or applications on their behalf. The Database contains the status (dynamic and
static information) of the monitored resources. Monitors dynamically store and main-
tain the status of the available computational resources in the database. The Scheduler
selects a potential server from a list of servers maintained in the database by frequent
monitoring and maps client requests to that server. Some NES systems have merged
the functionalities of basic NES components while others have splited the functional-
ities of NES components, thus giving rise to a different number of components and
different naming of components in each NES environment.

2.3.2.1 NeOS

NeOS [11] is an environment for solving optimization problems over the Internet.
NeOS have three components: client, server, and solver. NeOS client performs same
functionality as of the basic NES client, but NeOS server performs the functionality of
database, monitor and scheduler. NeOS solver performs the functionality of basic NES
server. Clients submit optimization problems to the NeOS server via e-mail, the World
Wide Web, or the NeOS Submission Tool. The server locates the appropriate optimiza-
tion solver and does all the additional work that is required by solver before and after
solving the submitted problem. The solver solves the submitted task for optimization.
Connectivity of the NeOS components is shown in Figure 2.1.
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Figure 2.1: The NeOS architecture
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Figure 2.2: The NetSolve architecture

2.3.2.2 NetSolve

NetSolve [29] has three main components: client libraries, agent and server. NetSolve
client and server performs the same functionality as of the basic NES client and basic
NES server respectively. Where as the functionalities of database, monitor and sched-
uler is merged in NetSolve agent. Using client libraries, users write applications and
submit them to NetSolve for execution. Agent gathers information about the server
and, depending on the server capability chooses the appropriate server to execute the
client-submitted task. A server is a networked resource that serves up computational
hardware and software resources. Figure 2.2 shows how these components are orga-
nized.

2.3.2.3 Nimrod

client

PE

Scheduler

Dispatcher

JW

Figure 2.3: Architecture of Nimrod-G
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The architecture of Nimrod [21] is shown in Figure 2.3 with its five key compo-
nents: clients, Parametric Engines (PE), a scheduler, a dispatcher and a Job Wrapper
(JW). PE performs the same functionalities as of the basic NES database. Functional-
ities of monitor is mutually performed by dispatcher and JW. JW also performs tasks
execution as basic NES server. Clients act as a user-interface for controlling and super-
vising an experiment under consideration. They also serve as a monitoring console
and list the status of all jobs, which a user can view and control. PE acts as a persis-
tent job control agent and is the central component from where the whole experiment
is managed and maintained. It is also called as Task Farming Engine (TFE) in some
Nimrod articles. It is responsible for parametrization of the experiment and the cre-
ation of jobs, maintenance of the job status, interaction with the clients, the schedule
adviser, and the dispatcher. The Nimrod scheduler is responsible for resource discov-
ery, resource selection, and job assignment and the dispatcher primarily initiates the
execution of a task on the selected resource as per the scheduler’s instruction and pe-
riodically updates the status of task’s execution to PE. JW interprets a simple script
containing instructions for file transfer and subtask execution. It is responsible for
staging the application tasks and data; starting execution of the task on the assigned
resource and sending results back to the PE via the dispatcher. It basically mediates
between the PE and the machine on which the task runs.
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Numerical
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Figure 2.4: Architecture of Ninf

2.3.2.4 Ninf

The basic Ninf [71] system have main two components: a client and a server (per-
forms the functionalities of database manager, scheduler and monitor of basic NES
environment). But to help the working of server other three elements are used: Re-
mote Library Executable (RLE), IDL compiler, Register driver. The client facilitates
the users by providing an easy to use API. RLE, executes numerical operation. RLE
contains network stub which handles the communication between server and clients
and marshals arguments. RLEs are implemented as executable programs with stub
routine as the main, which is managed by the server process. The IDL compiler com-
piles interface descriptions and generates ’stub main’ for RLE helping to link the ex-
ecutable. The register driver registers remote library executable into the server. The
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server provides library interface information and invokes the RLE. Connectivity of the
Ninf components is shown in Figure 2.4.

2.3.2.5 PUNCH

The core architecture of PUNCH [54] has three main units: client unit, management
unit and execution unit. Management unit performs the working of database manage-
ment, scheduler and monitor. Execution unit do tasks execution, so work as server.
The hierarchical connectivity of the units is shown in Figure 2.5. The client unit acts
as channels for command, preferences and directives specified by the user. It provides
interface related input and output to the system and is integrated into the local envi-
ronment, giving transparent access to the network computing system. Management
unit acts as a demand-driven scheduling engines for associated software and hard-
ware resources introducing access control policies and match making resources to the
requirements. The execution unit provides the management unit with consistent ac-
cess to the hardware resources.

2.3.2.6 WebCom-G

WebCom-G [72] is modular in design and has a multilayered architecture shown in
Figure 2.6(a) with components in each layer performing specific tasks. This design
separates the application dependency from the execution platform. The WebCom-G
system is vertically integrated to the underlying hardware and co-exists with exist-
ing core and user level grid middlewares. Core modules of the WebCom-G architec-
ture (Figure 2.6(b)) are the connection manager module, the load balancing module,
the fault tolerance module, the scheduling module, the communication module and
the security module which form a layer of WebCom-G. These modules are plugged
into the root module called the BackPlane module which is responsible for bootstrap-
ping particular instance of WebCom. Each of these modules perform task indepen-
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dent of each other to maintain the integrity of WebCom-G system. End users and
developers can develop their own modules or extend the existing modules and plug
them into WebCom-G system. There exists WebCom-G modules like COM/DCOM
modules, .NET modules, CORBA modules, EJB modules, Globus modules (for exe-
cuting COM/DCOM, .NET, CORBA, EJB and Globus instructions respectively). A
layer above these modules consists of utility plug-ins such as the WebCom Informa-
tion Service (WIS), the Status Analyzer, the Economic Analyzer, grid Administrator,
Programming Environments which utilize the underlying core modules. WebCom-G
co-exists with other middleware shown in Figure 2.6(a).
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Figure 2.6: Architecture of WebCom-G. (a)General view of WebCom-G. (b) A mini-
mal WebCom installation consists of a Backplane module, a Communication Manager
module and number of module stubs for processing, Fault Tolerance, Load Balancing
and Security.

Analysis
It can be seen that most of the architectures surveyed employ a two layered clien-
t/server model. The exception is WebCom which is hierarchical; to spread the com-
putational load across multiple subnets. This facilitates the exploitation of underly-
ing shared resources. Even this hierarchical structure is dynamically reconfigurable.
NeOS is aimed at optimization issues, Nimrod at parametric computations. PUNCH
is oriented at WWW browser enabled NES computing and NetSolve is multilayered
but does not support a hierarchical structure.
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2.3.3 Initialization

As shown in the previous section each NES environment has a different number of
components and each component has a different functionality. So the order of com-
ponent deployment also varies with each NES environment. In the following sections
the initialization steps of the surveyed NES environments are outlined.

2.3.3.1 NeOS

As it is a static environment to solve optimization problem, (NeOS servers are ini-
tialized by the NeOS administrator) / (users cannot initialize the NeOS server, they
can only submit their job for optimization to NeOS server). Thus there are no specific
initialization steps that can be mentioned here.

2.3.3.2 NetSolve

First the agent is launched. Then, servers register with it by sending a list of problems
that they are able to solve, the speed, workload of the machine on which they are
running, and the network’s speed (latency and bandwidth) between them and agent.
Once this initialization step is performed, a client can call upon the agent to solve a
problem. NetSolve [31] initialization steps are shown in Figure 2.7.

A

(1) (2) (3)

A A

Client

SS

Figure 2.7: NetSolve initialization steps

2.3.3.3 PUNCH

The initial step of PUNCH [54] system is the creation of the input files for the relevant
simulation in case of VLSI design and computer architecture followed by user input
parameters for the simulation program. Finally the simulation is started via a browser
interface.



2.3. CHARACTERISTICS COMPARISON OF NES ENVIRONMENTS 21

2.3.3.4 WebCom

A WebCom-G 12 binary distribution file can be downloaded from the official site by the
authorized users. Install it on the local machine. Depending on the requirements, one
can configure it to act as a master server or a client to one of the WebCom-G portals.
Users can launch the WebCom-G IDE, build applications on the fly and launch to run
on the local machine or target them to run at the remote machine or they can use the
command line execution facility. The initialization takes place within the backplane
which checks for modules that are loaded during the startup (that is why backplane
is a also referred as bootstrap program). Once the modules are loaded communica-
tion is initiated, clients connect and instruction queues are created for each. To each
client, work is being distributed by Condensed Graph engine which is scheduled by
the scheduler along with the help of load balancer.

Analysis
Components of NES environments can have different functionality and each can be
deployed independently. It can be seen that some systems use agents for initializ-
ing ( NetSolve), others are initialized upon submission of the tasks via their clients
or browser (NeOS, Ninf, PUNCH, Nimrod), where WebCom system has to be config-
ured initially but the state can be changed dynamically. Initialization reflect the type
of work that each system performs. Some of these systems are used for parametric
jobs (Nimrod), some for optimization of their application (NeOS), some for parallel/-
workflow computational management of work (WebCom).

2.3.4 Task Execution

The granularity and type of tasks being executed by the NES environment varies. Each
of these environments have its own model of task execution. General working of a ba-
sic NES environment is described below. The Monitors frequently monitor the status of
the available resources (server, network, latency, CPU load, etc..) and register the infor-
mation to the Database. Clients demand the scheduler to provide them with a suitable
computational server for their request to be executed with the help of client APIs (e.g.
C, Java, MATLAB, Fortran, Web, e-mail, etc.) or tools constructed using client APIs.
The scheduler queries the database and selects suitable computing resources based on
certain algorithms and return the selection to the client. Clients remotely invoke these
libraries or applications on the selected server. The server does the computation and
returns the resulted data to the client. The following sections shows the task execution
mechanism of surveyed NES environments.

2.3.4.1 NeOS

A client sends a job to the NeOS server. The server assigns each job to a solver script
that executes application software via requests to a communications daemon assigned

12http://portal.webcom-g.org
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to the application and solver station. The server can then delegate to the solver ma-
chines the tasks of interpreting data and executing software. The NeOS Comms Tool
is used to download the user files from the NEOS server to solver, to invoke the solver
application, and to return the solver’s results to NEOS. The NEOS Server, upon re-
ceipt of a job for a particular solver, connects to the machine running the Comms Tool
daemon for that solver, uploads the user’s data, and requests invocation of the remote
solver. The Comms Tool daemon, upon receipt of this message, downloads the user’s
data and invokes the application software. Intermediate job results can be streamed
back over the connection to the server and from there, in turn, streamed back to the
user. The Comms Tool daemon sends final results to the NEOS server upon comple-
tion of the job, and the server formats and forwards the results to the user. A detailed
working of NeOS with the submission flow for three jobs arriving simultaneously is
illustrated in [40].
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2
3 4

67
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A
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Figure 2.8: NetSolve task execution steps

2.3.4.2 NetSolve

A NetSolve session works as shown in Figure 2.8. (1) A client sends its task to the
agent. During a NetSolve deployment, the severs provide all the information regard-
ing its status and the tasks that they can execute to the agent. Then (2) an agent selects
the appropriate server for the client request and (3) gives the server a reference to
the client. Then agent increases the occupation status of this server by some factor
(NetSolve use some mechanism for it). (4) Clients directly connects to the server and
provide data for task execution to the server. When (5) tasks is executed (6) result is
sent back to the client by the server. (7) the Server conveys its current status to agent
after finishing the task, so that agent can remove the factor that the agent added to
the server occupation status. Detailed technical explanation of NetSolve component
working is available in [19].

2.3.4.3 Nimrod

Working of Nimrod [2] is shown in Figure 2.9. (1) Client sends a request to a PE. (2) PE
prepare data for client particular execution. (3) It asks the scheduler to order the re-
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Figure 2.10: Working of Ninf

quest. (4) The scheduler arrange the request according to some scheduling algorithms,
and (5) sends the ordered requests back to the PE. (6) The PE forwards the request to
the dispatcher, (7) which selects the appropriate Job Wrapper (JW). (8) The JW receives
the request from dispatcher. (9) It executes the program for a given set of parameters
and (10) sends back the result to dispatcher, which returns the result to PE (11). Re-
duction of executed data if required is done by the PE. Finally PE gives back the result
(12) to the client. Steps (1) and (12) are performed once per experiment, while steps (2)
to (11) are run for each distinct parameter set.

2.3.4.4 Ninf

Task execution by Ninf is shown in Figure 2.10. (1) Client sends an interface request
to server. (2) Server replies the interface requests. Then (3) client calls the library
to invoke the executable. (4) Server searches the Ninf executable associated with the
name that the client calls for and (5) upon successful search executes the library and (6)
setups a communication link with the client with the help of stubs to return the result.
In short, clients ask server to execute his request and server executes the requested
libraries and sends back the result.
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2.3.4.5 PUNCH

Figure 2.11 shows PUNCH’s working. (1) User access PUNCH system via standard
WWW browsers. (2) Network Desktop processes and responds to all “non-application-
invocation” requests. (3) Application invocation requests are forwarded to an appro-
priate management unit. (4) Management unit authenticates requests, determines re-
source requirements and selects execution unit. (5) Management unit sends the re-
quest to the execution unit. (6) Execution unit processes requests with the help of
available resources and (7) notifies management unit upon completion.

Client Unit

Management Unit

Execution Unit

User

Resources

1

2

3

4
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Figure 2.11: Working of PUNCH

2.3.4.6 WebCom

WebCom [66] consists of a master and an arbitrary number of clients. The master
initiates the computation. A client may be a master or a java enabled web browser
capable of executing atomic instructions. Client connected via web browsers will only
be sent atomic instructions (instructions which cannot be further distributed), where
as client masters may be sent both atomic and graph instructions.

WebCom deployment consists of number of Abstract Machines (AM). When a com-
putation is initiated one AM acts as the root server and the other AMs act as clients or
promotable clients. A promoted client acting as a server accepts connections and exe-
cutes tasks. Promotion occurs when task, representing Condensed Graph (CG), passed
to the client can be partitioned for further distribution. Hence in WebCom environ-
ment clients are promoted to masters depending on the type of task it receives [69].

Working of WebCom is shown in Figure 2.12. (1) Computation begins with 2-tier
hierarchy. Graph execution begins on the server. (2) Server sends a CG task to a
client, causing it to be promoted. (3) The promoted client requests additional clients
to be assigned to it by the server. This request might not be serviced. If not the client
continues executing the graph on its own. (4) The server issues a redirect directive
to a number of its clients. (5) Clients redirected from the server connect as clients to
the promoted client. (6) The promoted client directs its new clients to connect to each
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Figure 2.12: Working of WebCom-G

other forming a local peer to peer network. (7) Finally, when the tasks are executed
results are sent back to the parent server.

Analysis
The major difference in task execution among NES environments is based on the work
done by its components. As in NetSolve the work is done by the server on behalf of
its client, but in WebCom the work is done by the clients.

In NetSolve, agents search for potential servers, where as in system like WebCom,
servers search for potential clients for faster execution. Even the granularity of the
tasks executed is different in most of the surveyed systems. In some systems (NeOS,
PUNCH) atomic (single task) tasks have to be submitted where as in some system
(WebCom), tasks can be submitted as condensed (task within task) tasks.

2.3.5 Communication

Communication is very important for transferring the task and the tasks’ data to the
relevant components in the hierarchy of NES components. NES environments use
different types of communication technologies. In the following sections we present
the respective communication technology of each of surveyed NES environments.

2.3.5.1 NeOS

NeOS communicates with the user through Internet communication using TCP/IP.
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2.3.5.2 NetSolve

The Network enabled Solver based system’s components use TCP/IPv4 sockets and
a NetSolve-specific application layer protocol to communicate with each other [31].
Heterogeneity is supported by implementing a ’handshake’ transaction that initiates
each communication session, during which computer hosts determine whether they
understand the same data format. When an incompatibility is detected, Sun’s XDR
protocol is used to encode local data to a globally-understood format, allowing each
host to decode from this external data representation to its local format. The commu-
nication between the NetSolve modules is performed by using the NetSolve protocol
(NetSolve-IO). Input/output data are transmitted through a single stream between
the NetSolve client module and the server node. The client-agent and client-server
communications are performed through the NetSolve Proxy.

2.3.5.3 Nimrod

The interaction between the PE, the scheduler and the dispatcher takes place through
network protocol TCP/IP. All communications across the network are done via Re-
mote Procedure Call.

2.3.5.4 Ninf

The communication between a client and the server is achieved by standard TCP/IP
socket connection [75]. In an heterogeneous environment, Ninf uses the Sun XDR data
format as a default protocol. Clients can also specify call back functions on the client
side for various purposes, such as interactive data visualization, I/O of data, etc.

2.3.5.5 PUNCH

PUNCH components communicate through TCP/IP and HTTP protocols. All the in-
terfaces to the PUNCH system is via WWW enabled browsers. These components
use access codes and hash functions to authenticate component, passwords and users
identity.

2.3.5.6 WebCom

WebCom contains two Communication modules. One that possesses the minimum
functionality required for the configuration of traditional grid environment and a more
advanced one to bootstrap other modules of the WebCom from a specified code based
on the network. This module maintains a separate list of descriptors for servers and
clients. The communication module listens for the incoming connections from the
client supporting bi-directional communication.

Analysis
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NES environments use different types of communication technologies. TCP/IP
is used by most of the surveyed NES environments, like NeOS, NetSolve, Ninf and
PUNCH. Some also uses third parties to handle communications between their com-
ponents. Some also use technologies such as RPC and RMI.

2.3.6 Scheduling and Dynamic Load Balancing

Scheduling is a necessity of all existing systems. A good scheduling is the one that
can provide fairness in task distribution, have good policy enforcement and balance
a system when its fully busy while meeting the deadlines of the given task. NES
environments also use scheduling to fully utilize the resources, but each of them has a
different scheduling scheme.

When processor load cannot be determined statically, dynamic load balancing tech-
niques can be used for effective speedups. In this section we present the scheduling
techniques for each of the NES environments and dynamic load balancing for Web-
Com.

2.3.6.1 NetSolve

NetSolve use a theoretical model [10] to estimate the performance, given the raw per-
formance and the CPU load. This model gives (p) the estimated performance, as a
function of the CPU load (w), the raw performance (P ), and the number of processors
(n) on the machine:

p = P×n
w/100+1

The hypothetical best machine is the one yielding the smallest execution time T
for a given problem. It incorporates on-line scheduling heuristics that attempt to opti-
mize service turnaround time. A server has the capability to service simultaneously as
many requests as the operating system will allow it to fork processes, but the admin-
ister can specify the maximum number of requests it is willing to service at one time;
requests for services received once this limit is met will rejected. Similarly, a server
can specify its CPU load threshold and, once requests received after this threshold is
attained will be refused.

2.3.6.2 Nimrod

Nimrod-G provides a persistent and programmable task-farming engine (TFE) that
enables ’plugging’ of user-defined schedulers and customized applications or Prob-
lem Solving Environments (e.g., ActiveSheets) in place of default components. TFE is
a coordination point for processes performing resource trading, scheduling, data and
executable staging, remote execution, and result collation. The Nimrod-G system au-
tomates the allocation of resources and application scheduling on the grid using eco-
nomic principles in order to provide some measurable quality-of-service to the end
user.
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Figure 2.13: Demand-based Scheduling [54]

2.3.6.3 Ninf

Ninf (like NetSolve) makes scheduling decisions based on the dependencies of the
input data: any groups of remote calls are analyzed for dependency relationships, and
those that may be executed without waiting for another call to finish are immediately
sent off to a remote resource.

Although a programmer can define blocks of related function calls, the actual selec-
tion of a remote resource and the migration of data is handled by the Ninf Metaserver
(like the NetSolve agent). The user provides a problem description to the Metaserver,
which tries to match as closely as possible the correct resources to the submitted job,
based on a database of resource loads and performance.

2.3.6.4 PUNCH

Client, management and execution units are the three important units in the PUNCH
system. Each unit has a specific task to accomplish and the management unit acts as
demand-based scheduling engine (Figure 2.13) for respective software and hardware
resources. Depending on the requirements of the user requests, the management unit
analyzes the requirements and then matches the requirements with related resources.
Here the management unit acts as a matchmaker, mapping the requests to the appro-
priate resources.

2.3.6.5 WebCom

Decisions about when the tasks are to be run once they are ready to executed. The
functionality of this module is very trivial because as soon the task are ready they
will be soon executed. WebCom is a condensed graph based model providing many
scheduling mechanisms (namely critical path analysis, speculative computations, re-
duced priorities and others).

The Load balancing module [68] is one of the core modules of WebCom which is
plugged into the BackPlane. This module decides where the tasks are to be executed.
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It works using the Round Robin method to distribute tasks to the clients. When a
suitable client is known, this module requests the Backplane to send the instruction
to the selected client, if the selected client is not found, it re-schedules the task for
a local execution. WebCom-G requires all the variants of load balancing modules to
communicate directly with Backplane and depends on the status information of the
network provided by the communication module. Load balancing modules devel-
oped by the users, may employ different strategies with respect to security, resource
access, resource reliability and others.

Analysis
Most of the systems studied have a fixed scheduling scheme, like NetSolve, Ninf
and PUNCH. But others like Nimrod and WebCom allows plug-in-scheduling, where
users can add scheduling algorithms according to their requirements. All of the sys-
tems surveyed except WebCom employs a static load balancing scheme.

2.3.7 Fault Tolerance

The fault tolerance is a significant and complex issue in grid computing systems. Var-
ious techniques have been investigated to detect and correct faults in distributed com-
puting systems. Unreliable fault detection is one of the most effective techniques. The
availability of albeit unstable resources in non-dedicated environments mandate that
all faults in the stages of user computation be handled in a transparent and graceful
fashion. Variable stages during the computation exhibits various facets of fault tol-
erance, and as such they must be handled in a stage-by-stage basis. In the following
sections fault tolerance mechanisms and after effect of each component crash for NES
environments is stated.

2.3.7.1 NetSolve

The NetSolve system ensures that a user request will be completed unless every single
resource capable of servicing the request has failed [30]. When a client sends a request
to a NetSolve agent, it receives a sorted list of computational servers to try. When one
of theses servers has been successfully contacted, the numerical computation starts.
When one of these servers fail during the computation, then another server is con-
tacted and the computation restarts. This whole process is transparent to the user.
Each time a computational server malfunction (server unreachable, server stopped,
failure during computation, etc.) is detected by a client, this client notifies the failure
to the agent. The agent update its tables and takes the necessary measures. If all the
servers fail, then the user is notified that the computation can not be performed at that
time.

In NetSolve, if agent is crashed, NetSolve system can not be used. NetSolve server
crash has same effect as of DIET server’s crash.
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2.3.7.2 Nimrod

The PE takes the experiment plan as input, described by declarative parametric mod-
eling language (the plan can also be created using the Cluster GUI) and manages the
experiment under the direction of schedule adviser. It then informs the dispatcher to
map an application task to the selected resource. The PE maintains the state of the
whole experiment and ensures that the state is recorded in persistent storage. This
allows the experiment to be restarted if the node running Nimrod goes down [20]. PE
crash leads to unavailability of Nimrod environment.

2.3.7.3 Ninf

When a server fails to complete a task, the task is simply rescheduled to a new re-
source. Ninf integrates with the Condor system for checkpointing to enable fault tol-
erance for computation.

2.3.7.4 PUNCH

PUNCH system’s front end have logical accounts one per user on any given man-
agement unit. The management unit contains logical accounts for each authorized
PUNCH user who has access to the front end. PUNCH can handle single point failures
with the help of management unit via scalability. Fault tolerance is achieved through
distributing the software resources among appropriate number of management units.
If management unit crashes, requests can not be executed by PUNCH.

2.3.7.5 WebCom-G

The fault tolerance module [68] is another core module of WebCom-G which is plugged
into the BackPlane. It employs numerous algorithms to check point and re-schedule
the task in case of failure or unavailability of a client/machine which is performing
the task. Whenever a failure occurs in the execution hierarchy of WebCom, this mod-
ule kicks-in and reschedules the task to a different client/machine with the help of the
Communication module.

Analysis
NetSolve use fault tolerance mechanism based on timers. The web based systems em-
ploy a checkpoint and restart mechanism but only WebCom system includes a fault
survival mechanism which enables it to re-incorporate results from the failed execu-
tion into recovered process.

2.3.8 Data management

Data management is an important component in grid Computing due to different ap-
plication needs, for example some applications are data intensive and some applica-
tions are CPU intensive, further there might be data dependency between the com-
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ponents of a system. In any of these cases, data or applications have to be moved to
respective location to avoid the overhead of bandwidth.

2.3.8.1 NetSolve

The NetSolve approach provides two services to manage data inside the platform: the
Distributed Storage Infrastructure (DSI) and the Request Sequencing Infrastructure
(RSI).

DSI used to provide data transfer and storage. RSI used to decrease network traffic
amongst client and servers [38]. Data references are managed inside RSI or by file de-
scriptors in the DSI solution. In NetSolve request sequencing approach, the sequence
of computations needs to be processed by an unique server. In this case, a client has to
have the knowledge of the services provided by a server in order to use this approach.

Data is removed from server DSI depot after request computation, to handle the
data persistency. To reduce the data transfer time, DSI depot should be near to the
computational servers.

2.3.8.2 Nimrod

Nimrod database is containing routing information that is constructed, accessed, and
acted upon by the routing functions. An endpoint association should be stored close
to the endpoint so that other entities in the vicinity can quickly locate the endpoint. An
endpoint associations should also be stored at authoritative sources so that distant en-
tities can find the endpoint independently of its current location. Node representatives
collect maps from component nodes and build detailed maps from this information.
Abstract map built by abstraction of service information in detailed map or by config-
uration of measurement of service information. Map updates distributed to all node
representatives and all route agents for the enclosing node. Route agents use maps to
generate routes and may request lower-level maps based upon those received. Routes
are expressed as sequences of node locators, together with the labels for those node
service attributes used in route selection. Routes must include at least the source and
destination node locators.

2.3.8.3 Ninf

Ninf-C is based on Condor and thus uses the condor data management techniques.
In Condor data placement is handled by the Data Placement Scheduler (DaPs). DaPs
intelligently manages and schedules data placement activities/jobs.

2.3.8.4 WebCom

Data management in WebCom is simple and dynamic. The kernel of the WebCom
system is Condensed Graph model. The Condensed Graphs unify lazy, imperative
and data-driven evaluations of job execution. These evaluations depend on the qual-
ity of service requirement; whether job execution has to be completed slowly (lazy



32 CHAPTER 2. NETWORK ENABLED SERVER ENVIRONMENTS

computation) or in a systematic manner (like a workflow) or an on-demand (user has
to interfere at this point to give some input or analyze the results) user interactive ba-
sis. According to the quality data flow will match the dynamic evaluation techniques.
WebCom-G has a dynamic way of switching different evaluation techniques on need
basis.

Analysis
Some NES environments that need data management have their own data manage-
ment models, for eg., NetSolve has DSI. Others use third party data management.
Ninf uses Condor data management techniques. Data management in WebCom is
performed explicitly by the user in the form of workflow graphs. Some of the systems
(NeOS, PUNCH) surveyed have no data management support.

2.3.9 Security

Applications are run within the NES environments (commodity resources and on mul-
tiple administrative domains) for the users/clients who are not identified in person.
Security is a must for client code that is running in a NES environment and for the
owner of the resource on which the code is running. Security with respect to ad-
ministrator tampering the clients code and client.s trust of running valid code on the
providers machine. Security is one of the main concern in distributed systems.

2.3.9.1 NeOS

Security in NeOS is not inbuild. VPN security is used by NeOS for secure connections
between the application sent and the server.

2.3.9.2 NetSolve

Security in NetSolve 13 is enabled via Kerberos support. NetSolve servers have two
type of installation with Kerberized and non-Kerberized installation. In both the cases
clients send request to the server, Non-kerberized installation the server will return
a status code indicating the acceptance and Kerberized installation will return an au-
thentication error response to the request. So the clients have to send their Kerberos
credentials to the server before they proceed, this is how NetSolve server authenticates
its client. The Kerberized server maintains a list of Kerberos principal names to im-
plement access control. Validity of the clients connecting to the server is checked with
the access list. There is no encryption or integrity of data stream exchanged between
its components.

13http://icl.cs.utk.edu/netsolvedev/documents/ug/html/additions.html
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2.3.9.3 Nimrod

Nimrod does not have any inbuilt security. Nimrod-G which is globus enabled uses
the security provided by Globus (Grid Security Infrastructure).

2.3.9.4 Ninf

Ninf system does not have any built in security mechanisms. Ninf-G uses the security
provided by the Globus(Grid Security Infrastructure).

2.3.9.5 PUNCH

There is no implicit security built into the PUNCH system. But the front end to in-
terface with the PUNCH environment gives the required security. As PUNCH envi-
ronment and their tools can only be accessed WWW enabled browsers. Users are not
allowed to change, install, run code on this environment. They are only allowed to use
the tools provided by the PUNCH environments to do their experimental research.

2.3.9.6 WebCom

WebCom-G’s distributed computing architecture is used to distribute application com-
ponents for execution. WebCom uses KeyNote-based authorization credentials [44] to
assert whether a WebCom server is authorised to schedule and whether a WebCom
client is authorised to execute, distributed application components. Secure WebCom
provides a meta-language for bringing together the components of a distributed ap-
plication in such a way that the components need not concern themselves with se-
curity issues. WebCom also supports Dynamic administrative coalitions(DAC) [43],
where in users holding the administrative powers deligate administrative tasks con-
strained by some set of rules. This phenomenon is used in the integration of security
and workflow in a decentralised administrative architecture to provide fault survival
against failures.There is no encryption or integrity of data stream exchanged between
its components.

Analysis Only WebCom has a inbuild security system. Where as others use third party
security like security provided by VPN.

2.3.10 Deployment and Visualization Tools

It is difficult to see the status of a working production grid system without a cus-
tomized monitoring system. The status includes many details of the system such as
system running information, performance changes, system/software failures, security
issues and so forth. Most grid middleware provide a simple monitoring tool for their
systems, or provide simple tools to check the status of the system.
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2.3.10.1 NetSolve

NetSolve has a visualization tool called VisPerf written in Java. This tool is used to
display the status of the resources interacting with the NetSolve system. It is also
used to monitor the activity of the NetSolve grid. The overview of VisPref is shown
Figure 2.14.

Figure 2.14: Overview of visPerf Monitoring System [62]

2.3.10.2 WebCom

WebCom-G Integrated Development Environment (IDE) is both a deployment and vi-
sualization tool. It is a (1) dynamic visualization tool to view the services hosted by
the resources on which WebCom is installed, (2)an application development tool and
(3) an application launcher and a targeting tool. The Menu Bar (Figure 2.15) used for
Graph opening, editing, running operations. Palette hosts a list of active services, li-
braries of WebCom-G environment. These can be incorporated by just dragging and
dropping on to the canvas and building a graph application. The Graph Canvas/Draw-
ing Area is to build your graph applications on the fly. A Properties Panel hosts proper-
ties pertaining to graphs, nodes, edges present on the canvas.

Analysis
Not all surveyed NES environments have their deployment and /or visualization
tools. Only WebCom has both tools. WebCom uses IDE for both deployment and
visualization. NetSolve has only a visualization tool. The other systems surveyed
have no visualization tools.

2.4 Comparison of Systems

Table 2.1 shows the summary of the environments surveyed and their associated char-
acteristics. DIET has also been added in the table to have a quick view of DIET with
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Figure 2.15: Description: WebCom-G Integrated Development Environment

respect to the compared characteristics but detailed explanation of DIET is presented
in chapter 5. The table summary can be used to identify the major driving forces be-
hind the development of each system.

Only two of the surveyed environment provides deployment tools to facilitate the
work of user for environment deployment.

Three of the environment surveyed are capable of dynamically visualizing task
execution. In the other environments, tasks a processed in a "fire and forget" manner.

Support to WebService is available in all environments except one. It seems Web-
Service is the mostly used method to submit the jobs to the environments.

It can be seen that five environments surveyed have scheduling mechanism and
one among the left deals with optimization so scheduling is not that important factor
for it.

Dynamic load balancing hasn’t received any big attention from the environments.
Static load balancing is provide by five environments but dynamic load balancing is
provided by only one surveyed environment.

Most of the environments use basic timer mechanism for fault tolerance. Check-
pointing concept is available only in one among the surveyed environments and thus
have in-built fault tolerance. Some of the rest environments use the fault tolerance
mechanism provided by the third party like Globus or Condor.

It can be seen, for example, that security has not been a major consideration. Only
one of the seven environments surveyed has an integrated security mechanism, how-
ever, others do make use of the security features of their third parties component sub-
systems.

Three environments can potentially exploit the integration of loosely coupled re-
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sources. Of these, two require the use of the Globus middleware; the other, in contrast,
is capable of acting as stand alone middleware.

The environments that do not have security or fault tolerance important to the user,
who is interested in easy deployment and simple task execution. Because the added
mechanisms makes the environments heavy and bit complicated to be used by the end
users. So according to different needs users can select appropriate NES environments.

2.5 Conclusion

We did a survey of most prevalent NES environment, so as to obtain a depth knowl-
edge of existing NES environments. We have presented six NES environments (NeOS,
NetSolve, Nimrod, Ninf, PUNCH, and WebCom) under various headings, enabling an
objective comparison to be made. By objectively comparing these systems, an attempt
is made to enable potential NES users’ to choose an appropriate environment to best
suit their needs. In addition to these NES environments we also presented some other
systems which are popular grid middleware and grid systems. These systems work
in same space as NES environments but are different because some of them are based
on cycle steeling concept unlike NES environments, which are dedicated servers. And
some other systems which are dedicated does not provide scheduling system, job man-
agement services, queueing mechanisms as done by NES environments.
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DIET NeOS NetSolve Nimrod NINF-G PUNCH WebCom-G
Organization LIP,INRIA,

ENS Lyon,
France

Argonne Na-
tional Labo-
ratory/MCS

University of
Tennessee,
Knoxville

Monash Uni-
versity

collaborative
work

Purdue Uni-
versity

Centre for
Unified
Computing

Version DIET v1.1 NeOS v5 NetSolve
v2.0

Nimrod-G
v.3.0

Ninf-G 4.0.0 PUNCH v1.2 Anyware,
WebCom,
WebCom-G
(v0.1)

OS support Unix/Linux,
Mac OSX

Win 9x/XP,
Unix/Linux,
Mac OS,
Solaris

Win XP,
Unix/Linux

Win XP,
Unix/Linux

Win XP,
Unix/Linux,
Mac

Win 9x/XP,
Unix/Linux,
Mac OS,
Solaris

Win 9x/XP,
Unix/Linux,
Mac OS,
Solaris

Requirements OmniORB,
gcc

WWW
browser

gcc gcc gcc, Java
enabled
Machine

WWW
browser

Java enabled
Machine

Written in C, C++ Tcl/Tk, Java,
Kestrel

C C C, C++ no particular
language

Java

Scheduling Yes N/A Yes Yes Yes Yes Yes
Fault Tolerance (Checkpointing) No N/A No Yes Yes, Condor No Yes
Dynamic Job Migration No N/A No No No No Yes
Security Yes,

VPN and
CORBA
security

N/A No No Yes, Globus No Yes, Trust
management
and Keynote

Visualization Yes,
VizDIET

No Yes, VisPerf No No No Yes,
WebCom-
IDE

Deployment Yes,
GoDIET

No No No No No Yes,
WebCom-
IDE

WebService support No Yes Yes Yes Yes Yes Yes
Project Link graal.ens-

lyon.fr/DIET
www-
neos.mcs.
anl.gov/neos/

www.cs.utk.edu/
netsolve

www.csse.monash.edu.
au/ davi-
da/nim-
rod.html/
down-
loads.htm

ninf.apgrid.org/
packages

punch.purdue.edu/www.cuc.ucc.ie

Table 2.1: Table of Comparison
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Chapter 3

Deadline Scheduling with Priority of
tasks on Network Enabled Server
Environments

In previous chapter, six most common Network Enable Server (NES) environments
have been presented, so as to have a good knowledge of the mostly used NES. As
mentioned earlier NES endeavor to provide users an easy access to distributed re-
sources by hiding the complicated job distribution and resource allocation strategies
from the user. Thus, the two important factors that a NES should efficiently handle
are: (a) job distribution and (b) resource allocation. This chapter presents job distribu-
tion algorithms on a NES environment. Presented algorithms provide non-preemptive
scheduling of sequential tasks on NES. Implementation of non-preemptive scheduling
has been done, since at the user level it is not possible to interrupt a running process
and block it in order to allow a new process to run.

3.1 Introduction

Currently, NES systems use the Minimum Completion Time (MCT) on-line schedul-
ing algorithm where-by all jobs are scheduled immediately or refused. This approach
can overload interactive servers in high load conditions and does not allow adapta-
tion of the schedule to task dependencies. In this chapter we consider an alternative
model based on the deadline and priority of the task submitted to NES. The expected
response time of each task’s execution as a scheduling parameter is called deadline. The
priority for a task indicates how important the tasks is. Higher the task’s priority more
important is the task. A deadline scheduling with priority strategy is more appropri-
ate for multi-client, multi-server case. We assume that each task, when it arrives in the
scheduler, has a given static deadline (possibly given by the client). If a task completes
its execution before its chosen relative deadline, it meets the deadline. Otherwise the
tasks fails. Importance is first given to the task’s priority and then the task is allocated
to the server that can meet the task’s deadline. This may cause that some already allo-
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cated tasks on the server miss their deadline. We augment the benefits of scheduling
algorithms with fallback mechanisms and load measurements, which is done with the
use of a forecasting tool called FAST [39].

FAST (Fast Agent’s System Timer) is a software package allowing client applica-
tions to get an accurate forecast of routine needs in terms of completion time, memory
space and number of communication, as well as of current system availability. Appro-
priate tools like, NWS [85] are used to monitor the dynamic availabilities of system
resources. FAST is also able to aggregate information in order to forecast the current
computation time of given task on a given machine. The goal of FAST is however not
to perform task placement, but to acquire the required knowledge to achieve it.

We have presented the simulation results to show that the deadline scheduling
with priority along with fallback mechanism can increase the overall number of tasks
executed by the NES.

3.2 Related work

While a large number of papers describe priority algorithms for classical operating
systems, little research exists around scheduling algorithms using priority and dead-
line for grid applications.

Scheduling problem that combine tails and deadlines is discussed in [78]. Lower
bounds are given for the shop scheduling problems and an algorithm is presented with
an improved complexity to solve two parallel machine problem with unit execution
time operations. An algorithm in [83] finds minimum-lateness schedules for different
classes of DAGs when each task has to be executed in a non-uniform interval. Both
papers present interesting theoretical results that can not be directly implemented in a
grid platform due to some limitations of models.

A deadline scheduling strategy is given in [80] for multi-client multi-server case
on a grid platform. The authors assume that each task (tasks sent to the scheduling
agent) receive a deadline from the client. The algorithm presented aims at minimizing
deadline misses. It is also augmented with load correction and fallback mechanisms to
improve its performance. The first optimization is done by taking into account load
changes (due to previous scheduling decisions) as soon as possible. The fallback mech-
anisms makes some corrections to the schedule at the server level. If the server finds
that a task will not meet the deadline due to prediction errors, the task is re-submitted
to the system. Simulation has been provided using the Bricks simulation framework.
A background load is simulated and real traces are injected in the model to simulate
the extra load of the system. Optimized algorithms are compared to a simple greedy
algorithm that does not take deadlines into account. This algorithm is indeed less ef-
ficient than the optimized ones. The simulation shows that while the load correction
mechanism does not improve the overall execution time significantly, the fallback op-
timization leads to important reductions of the failure rates without increasing the cost
of scheduling. Our work is complementary, as we present the scheduling algorithm
that take into account both the deadline and priority of task while scheduling. Even
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we have also tested our algorithm with the fallback mechanism.

3.3 Scheduling algorithms for NES environments

The presented scheduling algorithms aim at scheduling sequential tasks on a NES en-
vironment. This kind of environment is usually composed of an agent receiving tasks
and finding the most efficient server that will be able to execute a given task on behalf
of the client. The client submits the request to the portal (an agent) of NES, which is
responsible for allocating the resources and scheduling the tasks for execution. Based
on different criteria the scheduling of tasks is done. Scheduling algorithms presented
below are based on the servers’ load, and task’s deadline and priority.

3.3.1 Client-server scheduler with load measurements

As we target heterogeneous architectures, each task can have a different execution
time on each server. Let TaSi

be the execution time for the task a on server i. This time
includes the time to send the data, the time to receive the result of the computation
and the execution time:

TaSi
=

Wsend

Psend
+

Wrecv

Precv
+

WaSi

PS

where Wsend is the size of the data transmitted from the client to the server, Wrecv

denotes to the data size transmitted from the server to the client, WaSi
is the number of

floating point operations of the task, Psend denotes the predicted network throughputs
from the client to the server, Precv denotes the predicted network throughputs from the
server to the client and PS is the server performance (in floating point operations per
second).

Psend should be replaced by the network throughput value measured just before
the task. This value is returned by one call to FAST (Section 5.2.4). Precv is estimated
using previous measurements. The CPU performance is also dynamic and depends
on other tasks running on the target processors. Thus, FAST can be used to provide a
forecast of CPU performance, so as to take into account the actual CPU workload.

Algorithm 3.1 gives a straightforward algorithm to get a sorted list of servers that
are able to compute the client’s task. It assumes that the client takes the first available
server, which is most efficient, from the list. However, a loop can be added at the end
of the algorithm between the task_ack and task_submit calls.

For sake of simplicity we define four functions for Algorithm 3.1:

can_do This function returns true if server Si have the resource required to compute
task Ta. This function takes into account the availability of memory and disk
storage, the computational library etc.



42 CHAPTER 3. DEADLINE SCHEDULING WITH PRIORITY OF TASKS ON NES

Algorithme 3.1 Straightforward algorithm: client-server scheduler with load measure-
ments.

1: repeat
2: for all server Si do
3: if can_do(Si, Ta) then
4: TaSi

= Wsend

FBd
+ Wrecv

Precv
+

WaSi

FSi

5: List=sort_insert(List,TaSi
, Ta, Si)

6: num_submit=task_ack(List, 2×Wsend

FBd
)

7: task_submit(List[num_submit])
8: until the end

sort_insert This function sorts servers by efficiency. As an input, we have the
current List of servers, the time predicted TaSi

, the task name Ta and the server
name Si. Its output is the List of ordered servers.

task_ack This function sends the data and the computation task. To avoid a dead-
lock due to network problems, the function chooses the next server in the list if
the time to send the data is greater than the time given in the second parameter.
The output of this function is the server where the data are sent (index number
in the array List).

task_submit This function performs the remote execution on the server given by
task_ack.

3.3.2 Client-server scheduler with a forecast correction mecha-
nism

The previous algorithm assumes that FAST always returns an accurate forecast. In
this section, we take into account the gap between the performance prediction and the
actual execution time of each task.

The function task_submit is upgraded to return the time of the remote execution.
Thus, we can modify the next predictions from the monitoring system as follows to
obtain the corrected load values:

TaSi
=

TaSi
× CorrecFAST

100

where CorrecFAST is an error average between the prediction time and the actual
execution time. This value is updated at each execution as follows:

CorrecFAST =
nb_exec × CorrecFAST + 100×Tr

TaSi

nb_exec + 1

where Tr is the actual execution time and TaSi
the time predicted.
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Algorithme 3.2 Scheduling algorithm with forecast correction mechanism.
1: CorrecFAST = 100
2: nb_exec = 0
3: for all server Si do
4: if can_do(Si, Ta) then
5: TaSi

= Wsend

FBd
+ Wrecv

Precv
+

WaSi

FSi

6: TaSi
=

TaSi
×CorrecFAST

100

7: List=sort_insert(List, TaSi
, Ta, Si)

8: num_submit=task_ack(List, 2×Wsend

FBd
)

9: Tr=task_submit(List[num_submit])

10: CorrecFAST =
nb_exec×CorrecFAST+ 100×Tr

TaSi

nb_exec+1

11: nb_exec++

3.3.3 Client-server scheduler with a priority mechanism

Until now, for client-server system, either the deadline scheduling or the priority based
scheduling are considered. Here we give an algorithm that utilizes both criteria to
select a server for the task.

In Algorithm 3.3, tasks have a predefined priority and deadline. A task is allocated
on the server task queue according to its priority. If a task can meet its deadline then
it is sent to the server for execution. For Algorithm 3.3, we define some new variables.
TDa is the deadline and TPa is the priority of task Ta. TFaSi

is the changed execution
time of task Ta on server Si after placing it on the server task queue. To simplify the
explanation of the algorithm, we define five functions:

Algorithme 3.3 Client-server scheduler with priority mechanism.
1: repeat
2: for all server Si do
3: if can_do(Si, Ta) then
4: TaSi

= Wsend

FBd
+ Wrecv

Precv
+

WaSi

FSi

5: if TaSi
< TDa then

6: count_fallback_tasks(Ta, TaSi
, TPa, TDa)

7: if TFaSi
< TDa then

8: best_server(Si,best_server_name)
9: task_submit(best_server_name,task_name)

10: Re-submission(task_name)
11: until the end

can_do This function returns true if server Si have the resource required to compute
task Ta. This function takes into account the availability of memory and disk
storage, the computational library etc.
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Count_fallback_tasks This function counts the fall-backed tasks. Tasks that can-
not meet their deadline after the insertion of the new task are called fall-backed
tasks. Task Ta is placed according to its priority TPa on the server task queue,
which may change the execution time of the tasks on the queue.

best_server This function selects the best server among the servers that can exe-
cute the task within the deadline time. The best server is selected by comparing
the number of fall-backed tasks. Server with less fall-backed tasks is selected for
the task execution. If the servers have same number of fall-backed tasks, then
the time to compute the task is compared and the server that takes less time is
selected.

task_submit This function performs the remote execution on the server given by
task_ack. The argument of the function is one server, not a list of servers as in
Algorithm 3.1.

Re-submission This function submits the fall-backed task to the servers, for recom-
puting the execution time. If any server can meet the task’s deadline then the
task is allocated to that server.

Execution time
on server

Task Priority Deadline S1 S2 S3

1 3 15 3 5 6
2 5 10 5 12 9
3 2 30 11 20 15
4 4 20 10 np 17
5 5 15 12 14 np

Table 3.1: Priority, deadline and computation time of each task.

Figure 3.1 shows an example to explain the behavior of Algorithm 3.3. Lets con-
sider 3 servers with different capacities and 5 tasks. The priority, deadline, and com-
putation time of each task on each server is shown in Table 1. Execution time is the
time taken by the dedicated server to compute the task when the server is free. Com-
putation value np denotes that the task cannot be executed on the server, which maybe
due to the type of the task, memory requirement etc. A task is allocated to the server
while checking the execution time on each server, its priority and deadline. Task T1 is
allocated to server S1. Task T2 is also allocated to server S1. As its priority is higher it
shifts the task T1, so the execution time of T1 is changed. If task T3 is placed on server
S1, it will take less execution time but due to its priority the execution time will be
changed. So task T3 is placed on server S3. Task T4 is placed on server S1, but while
doing so task T1 is fall-backed. Re-submission of task T1 is done and it is allocated to



3.4. SIMULATION RESULTS 45

T1

T1T2

T1T2

T2

T2

4T T1

T5

T3

T3

T3T14T

3

Server1 Server2 Server3

5 8

85

5

5

15 5

14

15

15

6 2115

Figure 3.1: Example for priority scheduling algorithm with fallback mechanism. Task
id and execution time is written diagonally in each box.

server S2. Task T5 is placed on server S2. As its priority is higher than task T1, execu-
tion time of T1 changed and the task is then fall-backed. Again re-submission is done
and task T1 is placed on server S3.

3.4 Simulation results

To simulate the deadline algorithm with priority and the impact of fallback mechanism
with this model we use a simulation toolkit called SimGrid [28]. SimGrid provides an
excellent framework for setting up a simulation where decisions are taken by a single
scheduling process [22, 79].

For experiment, we took 100 servers to execute the submitted tasks. Each task is
associated with a priority and deadline. We randomly generate the priority between 1
and 10 and considered tasks deadline to be 5 times of the computation amount needed
by the task on dedicated server.

Experiments have been done by fixing the priority of the tasks and varying the
priority depending on tasks’ size. Figure 3.2 shows when tasks with same priority is
submitted the number of executed tasks is less than the tasks executed with random
priority. When the number of tasks is less the impact of task priority is negligible. But
as the number of tasks increases, tasks’ priority plays an important role for increasing
the number of tasks executed.

Algorithm 3.3 has been used to check the impact of fallback mechanism on the
number of tasks executed under different criteria in Figure 3.3 and Figure 3.4. Fig-
ure 3.3(a) shows that the fallback mechanism has no effect if the tasks have the same
priority. But in Figure 3.3(b), Figure 3.4(a), and 3.4(b), it can be seen that the fallback
mechanism is very useful as the number of submitted tasks (with priority and different
sizes) is increased.
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Figure 3.2: Priority based tasks are executed without fallback mechanism.

3.5 Conclusions

In this chapter we have presented the first step to use NES systems efficiently by pro-
viding algorithms for scheduling the sequential tasks on NES systems.

We have shown that the load correction mechanism using FAST [39] and fallback
mechanism are efficient to increase the number of executed tasks. We presented an
algorithm that considers both priority and deadline of the tasks to select a server. We
showed through simulation that the number of tasks that can meet their deadlines
can be increased by 1) using task priorities and by 2) using a fallback mechanism to
reschedule tasks that were not able to meet their deadline on the selected servers.

Having efficient algorithms to schedule tasks on NES system is an auspicious be-
ginning towards the achievement of best throughput from NES systems. However,
resource allocation according to the NES’s components is also a very important factor
to influence the performance of any NES system. In next Chapter 4 we present the
overview of some existing tools that are used for resource allocation.
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(a) Tasks without priority

(b) Tasks priority vary between 1-10

Figure 3.3: Comparison of tasks executed with and without fallback based on tasks
priority.
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(a) Tasks with execution time less than 15 minutes on dedicated servers

(b) Tasks with execution time greater than 4 hours on dedicated server

Figure 3.4: Comparison of tasks executed with and without fallback based on tasks
execution duration.



Chapter 4

Deployment

As mentioned earlier the two main factors to use a NES system efficiently are (a) job
distribution and (b) resource allocation. In previous Chapter 3 we have presented
scheduling algorithms to schedule sequential tasks according to the task’s priority and
deadline. The algorithms [90] have to be implemented on well deployed NES system
on grid resources. But as end users can be biologists, mathematicians, astrophysicists,
etc. and for them to select appropriate resource (resource selection) for their applica-
tion, telling the type and location of the selected resource (resource localization) and
mapping their application files (executable, libraries etc) on to the selected resource is
very complex task. To help the end users in availing the most from computation grid,
an automatic deployment process of applications/ middleware (NES components) on
computation grid is required.

Due to the scale of grid platforms, as well as the geographical localization of re-
sources, middleware approaches should be distributed to provide scalability and adapt-
ability. Much work has focused on the design and implementation of distributed mid-
dleware. To benefit most from such approaches, an appropriate mapping of middle-
ware components to the distributed resource environment is needed. However, while
middleware designers often note that this problem of deployment planning is impor-
tant, only a few algorithms exist [18, 35, 50, 59, 56] for efficient and automatic deploy-
ment.

In this chapter we present some of the existing tools that are used to deploy some
specific software/ middleware on set of available resources.

4.1 Introduction

A deployment is the mapping of a platform and middleware (applications/software)
across many resources. Deployment provides reliability by allowing greater control of
the distribution process and increases security as it ensures that only authorized per-
sonnel have access to the grid. The tool which deploy the middleware (or application)
on to grid or cluster according to deployment plan is referred as deployment tool. Input
to a deployment tool is the deployment plan which describes which resources should
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be used and how they should be connected (directly, hierarchically, etc.) with each
other. Deployment is done in phases and order of deployment phases is not rigid. If
any problem occurs like selected resource is not reachable, transformation arisen from
deployment scheme to the deployment plan etc. then some phases are repeated. But
in general the order of deployment phase is as mentioned below.

Initially Resource discovery phase, discovers the resources that are compatible with
the middleware (application) requirement. Deployment planning phase, generates the
deployment plan based on middleware (application) description and discovered re-
sources. In Resource selection phase, resources are selected according to deployment
plan that will host the middleware component (or execution of application). In Re-
mote files installation phase , the different parts of each component have to be mapped
on some of the selected resources. Pre-configuration phase checks the files and other
requirements that should be installed and configured before launching the applica-
tion. Launch phase executes the deployment tasks while respecting the precedences
described in the deployment plan. Post-configuration phase generally launch script(s)
for cleaning and killing of processes that were launched.

There exist [7, 18] some deployment tool that takes a user defined deployment
plan as input. Selecting a good deployment plan manually according to the middle-
ware (application) and resource description is a complex and very time consuming
task. Only expert can do it efficiently in reasonable time. To facilitate the generation of
deployment plan a deployment planning tool is required. Till now very few deployment
planning tools exist and that are also specific for some application (or middleware).
The input to the deployment planning tool is a description of the middleware compo-
nents (or application) and a description of the available resources. Deployment plan-
ning tool generates deployment plan by selecting compute nodes and mapping the
middleware components (or application processes) onto the selected compute nodes.

In this chapter the two deployment categories: software deployment and system de-
ployment are presented with some of the existing tools. The comparison of the tools is
presented in discussion section.

4.2 Software deployment

Software deployment maps and distributes a collection of software components on
a set of resources. Software deployment includes activities such as releasing, config-
uring, installing, updating, adapting, de-installing, and even de-releasing a software
system. The complexity of these tasks is increasing as more sophisticated architec-
tural models, such as systems of systems and coordinated distributed systems, be-
come more common. Many tools have been developed for software deployment based
on different approaches. Deployment using mobile agents (eg., Software Dock [50],
JADE [18], SmartFrog [48] ), or by using AI planning techniques (eg., Pegasus [35, 37],
Sekitei [57]) or based on software architecture (eg., JDF). The sequence of these deploy-
ment software in this chapter is in a alphabetic order ADAGE, JADE, JDF, Pegasus,
Sekitei, SmartFrog, and Software Dock.
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4.2.1 Automatic Deployment of Applications in a Grid Environ-
ment

Automatic Deployment of Applications in a Grid Environment (ADAGE) [61] is a pro-
totype middleware. It currently deploys only static applications on the resources of
a computational grid. Deploying applications can be distributed applications (like
CORBA component assembly), parallel applications (like MPICH-G2) or combination
of the two applications.

The middleware requires two pieces of information: application description, and
resources description. These descriptions are represented as XML documents. Re-
source description includes compute nodes and their characteristics (operating sys-
tem, architecture, storage space, memory size, CPU speed and number, etc.) as well as
network information (topology, performance characteristics). Using those two pieces
of information, ADAGE automatically selects resources which will run the applica-
tion and maps the application processes onto the selected resources. ADAGE uses
either of the two basic scheduling algorithms, round-robin or random. The ADAGE
deployment planner selects a job submission method (SSH or Globus2) based on its
availability and control parameters. Finally it automatically launches the application
processes remotely using the Globus Toolkit (version 2) as a grid access middleware,
and initiates the application execution.

Analysis: ADAGE working phases are presented in Figure 4.5. ADAGE imple-
ments defined deployment planning given by the user on the resources described in
resource description document. For remote installation ADAGE uses scp or GridFTP.
Adage_deploy launches the processes using the specified remote process creation method
(e.g., SSH, Globus, etc.) and configure the application.

4.2.2 JXTA Distributed Framework

JXTA Distributed Framework (JDF) [7] is a framework for automated testing of JXTA-
based systems from a single node refereed as control node. JDF provides a generic
framework allowing to define custom tests, deploy all the required resources on a dis-
tributed testbed and run the tests with various configurations of the JXTA [8] platform.

To use JDF each node should have Java (1.4.x), JXTA 2.2.1 (or before), bourne shell
and ssh ( preferably OpenSSH supporting ssh v2) or rsh. As JDF is dependent on
ssh and bourne shell, it only runs on Unix platforms currently.

JDF requires all information about distribution before hand. Network description
file defines the requested JXTA-based network and notion of nodes profile. Node file
presents the list of physical nodes and the path of the JVM on each physical node. File
transfers and remote control are handled using either ssh/scp or rsh/rcp. A node
(control node) has to be selected to run JDF from. All other physical nodes should be
visible from the control node. User submit the JXTA platform that should be tested and
the path to the files in the form of an XML file to JDF. JDF is run through a regular shell
script which launches a distributed test. This script executes a series of elementary
steps: (a) install all the needed files (b) initialize the JXTA network (c) run the specified
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test (d) collect the generated log and result files (e) analyze the overall results and
remove the intermediate files. Killing of all the remaining JXTA processes can also be
done using a kill script.

Analysis: JDF is a deployment tool specific to JXTA. It is a very basic deployment
tool, as it has no deployment planning method and the resource selection XML file had
to be given by users. JDF uses scp to remote file installation and SSH for job launch
on deployed platform.

4.2.3 Pegasus

Pegasus [37] is a workflow mapping system that maps an abstract workflow descrip-
tion onto Grid resources. Pegasus uses an AI-based planner (Prodigy Planner [77])
to perform the mapping. Abstract workflow is composed of tasks (application com-
ponents) and their dependencies (reflecting the data dependencies in the application).
Abstract workflow can be created by three different methods. (a) Experienced applica-
tion developers designs their own executable workflows (workflows already tied to a
particular set of resources). (b) By using Chimera, a virtual data system that combines
a virtual data catalog with a virtual data language interpreter. (c) By using assistance
from intelligent workflow editors such as the Composition Analysis Tool (CAT). The
resulting abstract workflow is specified in XML in the form of a DAX (DAG XML
description).

Once Pegasus get an abstract workflow, Pegasus [36] consults various Grid infor-
mation services. Monitoring and Discovery Service (MDS) provides information about
the number and type of available resources, static characteristics such as the number
of processors and dynamic characteristics such as the amount of available memory.
Replica Location Service (RLC) maintains and provides access to mappings between
logical names of data items and their target names. Transformation Catalog (TC) de-
termines the location where the computations can be executed. If there are more loca-
tions, a location is chosen randomly. Pegasus adds two types of data nodes; transfer
nodes and registration nodes. As node name specifies, transfer nodes are used to stage
data in or out and registration nodes are used to publish the resulting data products
in Grid information services.

Pegasus combine the information from the TC with the MDS information, to make
decision about resource assignment. The abstract workflow can only be executed if the
input files for the workflow components can be found somewhere in the Grid and are
accessible via a data transfer protocol. Pegasus prefers to schedule the computation
where the data already exist, otherwise it makes a random choice. Pegasus generates
concrete workflow in a form of files which is submitted to DAGMan [46] for execution.
Submitted files indicate the operations to be performed on a given remote systems and
the order in which the operations need to be performed. DAGMan is responsible for
enforcing the dependencies between the jobs defined in the concrete workflow. Jobs
can be mapped and executed on a variety of platforms: Condor pools, clusters man-
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Figure 4.1: Components of a workflow generation, mapping and execution system.

aged by Load Sharing Facility (LSF) 1 or Portable Batch System (PBS) [51], TeraGrid 2

hosts, and individual hosts. Figure 4.1 outline the above explanation.
Analysis: Pegasus uses Prodigy planner to perform the mapping and Grid ser-

vices like RLS, TC, and MDS for resource selection, remote file installation and pre-
configuration. DAGMan performs the launch according to the submitted concrete
workflow files.

4.2.4 Sekitei

Sekitei [57] is an AI planner for constrained component deployment in wide area net-
works. Sekitei is developed to solve the Component Placement Problem (CPP). CPP
is concerned with finding a valid component deployment, i.e., a set of components,
linkages between them, and a mapping of the resulting DAG onto links and nodes of
a wide area network, so that client requirements are satisfied.

The CPP can be viewed as an AI planning problem with resource constraints. The
state of the system is described by the availability of interfaces on nodes and place-
ment of components on nodes. This information is described by a set of propositional
(boolean) variables. Properties of nodes, links, and interfaces on nodes are described
by real-valued resource variables. Operators correspond to placing a component on a
node and sending an interface over a link. The CPP goal is translated into a proposi-
tional goal of having a component placed on a node. Figure 4.2 describes the process
followed to solve the CPP problem. In this process the planner works in conjunc-
tion with a component framework. The component framework dictates a component
placement problem in XML. This CP problem is translated into a planning problem

1http://www.epcc.ed.ac.uk/DIRECT/grid/node45.html
2http://www.teragrid.org/
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using a compiler. The planner solves the planning problem and gives out a plan. The
plan is then decompiled into a deployment plan and fed back onto the component
framework. The component framework then uses this deployment plan to deploy the
actual components in the network.

Figure 4.2: Process flow graph for solving CPP [58].

Sekitei [57] limits the search space by combining regression and progression ap-
proaches and adding resource checks in layers, so that resource functions are evalu-
ated only for promising operators. Sekitei performs regression (backward search) and
progression in the network structure similar to classic planners reasoning about time.

Figure 4.3: Sekitei algorithm phases [55].

The Sekitei algorithm consists of four phases shown in Figure 4.3. Each of the
phases solves a relaxed problem. A solution to the relaxed problem is an argument
of a new subproblem, which is passed to the next phase of the algorithm. Thus, the
regression phase of the algorithm finds a smallest set of possible operators for the
original problem with all resource requirements ignored. This set of operators is then
used by the progression phase to determine if the goal is reachable given this set of
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operators and an aggregated version of resource constraints. If it is not, the algorithm
backtracks to the regression phase to obtain a bigger set of possible operators. If the
goal is reachable, the progression graph, which contains an aggregated representation
of all plans reaching the goal, is passed to the third phase of the algorithm, plan ex-
traction. The plan extraction phase performs a search in the progression graph, and all
candidate plans are passed to the last phase of the algorithm for symbolic execution.
Success of the fourth stage guarantees that the found plan is correct.

Analysis: Sekitei provides a deployment planner to solve the CPP. Sekitei provides
a deployment plan based on CPP and planning problem. Four phases of Sekitei algo-
rithms are repeated till a deployment plan is generated.

4.2.5 SmartFrog

SmartFrog [47] is a framework for describing, deploying, igniting and managing dis-
tributed applications. The SmartFrog framework consists of a description language for
specifying the configuration of applications, a deployment infrastructure for realizing
the application descriptions, a component model to manage the applications through
their life cycle, and a set of useful components that populate the framework to support
various forms of application behavior.

SmartFrog deployment infrastructure is a Java-based fully distributed network of
co-operating daemons that interpret SmartFrog descriptions in order to automatically
and correctly instantiate the applications they describe. The SmartFrog deployment
infrastructure is a distributed network of components that interprets system descrip-
tions, realizes the systems subcomponents in the correct order, and binds them to-
gether. The deployment infrastructure continues to manage the components while the
system is running, and is also responsible for the clean, properly sequenced shut-down
of the system. If any component fails, the deployment infrastructure can detect this
and can be configured to take restorative action, or to shut down the system cleanly.
The deployment infrastructure default uses RMI as communication and advertising
mechanism, but can use other mechanisms also. Any process can load resources (such
as java code)dynamically when needed for the deployment of a SmartFrog application
from a central repository such as a web server.

Analysis: SmartFrog is an agent-based application deployment tool. SmartFrog is
a very simple and basic tool, as it do file installation on user defined resources. It has
no planning for resource discovery and selection for deployment.

4.2.6 Software Dock

The Software Dock framework [50] is an agent-based deployment framework to sup-
port the ongoing cooperation and negotiation among software producers themselves
and among software producers and software consumers. The architecture of Software
Dock is shown in Figure 4.4. The Software Dock employs agents to traverse between
software producers and consumers in order to perform software deployment activ-
ities by interpreting the descriptions of software systems. The release dock serves
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as a release repository for the producer’s software systems. The field dock servers
as an interface to the consumer site. The field dock standardize the information about
consumer organization by creating a common software deployment namespace for ac-
cessing consumer-side properties, such as operating system and computing platform.

Initially only an agent responsible for installing the specific software system and
the description of the specific software system are loaded onto the consumer site from
the originating release dock. Direct communication between agents and docks is pro-
vided by standard protocols over the Internet.

Figure 4.4: Architecture of Software Dock [50].

Each software release is accompanied with generic agents that perform software
deployment processes by interpreting the description of the software release. These
agents which accompany software releases dock themselves at the target consumer
site’s field dock and perform the respective task (i.e., install or update or reconfigure
etc). Similarly, agents associated with deployed software systems can subscribe for the
different release events notifications about release-side occurrences. The release dock
and the field dock both manage standardized, hierarchical registry of information that
records the configuration or the contents of its respective sites and create a common
namespace within the framework. Any change in the registry generates an event that
agents receive in order to perform subsequent activities.

The wide area event service provides a means of connectivity between software
producer and consumer for push style capabilities.

Analysis: Software Dock framework performs software deployment activities by
interpreting the descriptions of software systems. All resources individually sends the
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ment is organizing and naming whole cluster nodes as master, slave, etc. As deploying
systems can be a time consuming and cumbersome task, tools such as Dell Deploy-
ment Toolkit [1], Kadeploy [64] and Warewulf 3 have been developed to facilitate this
process.

4.3.1 Dell OpenManage Deployment Toolkit

Dell OpenManage Deployment Toolkit (DTK) performs automated and scripted de-
ployments of Dell PowerEdge servers. DTK comprises a set of MS-DOS utilities, batch
scripts, and configuration files.

DTK’s utilities can be used as stand-alone tools for configuring individual compo-
nents such as BIOS, or they can be integrated into scripts for one-to-many mass system
deployments. These utilities need at least MS-DOS 6.22 or higher. The DTK’s scripts
determines the overall execution flow: what executes when, where to find the required
files and returns error codes when problems occur. These script are optimized for MS-
DOS 7.1 or higher. DTK can now deploy two operating systems, windows (2000 ad-
vanced server and 2003 enterprise edition) and Red Hat (Linux 9, Enterprise Linux 2.1
and 3).

DTK deploy operating system in eight steps. (a) sysinfo.exe utility acquires system
information (configuration and hardware information). (b) Information returned by
sysinfo.exe is used by the scripts to perform system specific tasks. (c) BIOS falsh up-
dates and configuration is performed by using the DTK’s utilities. biosflsh.exe utility
updates the system BIOS to a version specified by .hdr file. bioscfg.exe utility is used
for configuring system BIOS settings and save the settings to a file. (d) Administrator
use the saved file with the biosrep.bat utility to replicate the model BIOS configuration
to multiple systems. (e) The utilities racadm.exe and racconf.exe are used to configure
Dell Remote Assistance Cards (RACs). (f) RAID controllers are configured by using
raidcfg.exe utility. This utility also creates containers that are used by pertcfg.exe util-
ity to create disk partitions that can be used during the OS installation. (g) mount
utility made available disk partition to MS-DOS deployment tools. (h) rhinst.bat and
wininst.bat scripts are used for scripted OS deployment.

Analysis: DTK is specific for deployments of Dell PowerEdge servers. DTK uses
tools to configure each component and scripts for the flow of overall execution. Utility
corresponding to each phase of DTK’s working is shown in Figure 4.5.

4.3.2 Kadeploy

Kadeploy [63] provides a set of tools for configuration, installation and deployment of
an operating system on a set of nodes. Currently it deploys successfully Linux, BSD,
Windows, Solaris on x86 and 64 bits computers.

To use Kadeploy, systems should have privileges to execute Kadeploy, nodes’ hard-
ware (network interface) must be PXE compliant, this means that the BIOS/EFI should

3http://www.warewulf-cluster.org/cgi-bin/trac.cgi
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allow to boot from the ethernet card, DHCP server, TFTP server that meets PXE stan-
dard and Perl. Kadeploy install the database and uses it to maintain the persistence of
the information about the cluster composition and current state.

Kadeploy perform complete deployment in five steps. (a) reboot on the deploy-
ment kernel via PXE protocol. (b) pre-installation actions (bench, partitioning and/or
file system building if needed etc.) by using preinstallation script (executed before
sending the system image). (c) Copy the system environment (system image). (d)
post-installation by using post-installation scripts (executed after having sent the sys-
tem image) and (e) finally, reboot on the freshly installed environment. If the deploy-
ment fails on some nodes, these are rebooted on a default environment.

Kadeploy uses different tools to facilitate the deployment. Initially cluster should
register current state of its software and hardware composition in database. Karecor-
denv tool is used to register the cluster “software” composition. If any environment
is already installed on some partitions of some nodes, it is necessary to register it by
giving the appropriate information (image name, image location, kernel path etc.) to
the karecordenv tool. kaaddnode is used to register the cluster "hardware" composition.
The tool registers the information (name and addresses of nodes, disk type and size,
partition number and size etc.) in the database. After gathering all information about
the cluster nodes, system is ready for deployments.

kaarchive creates an environment image and kacreateenv registers the environment
image in deployment system and make it available for deployment. Environment is
launched by Kadeploy which deploy the registered environment on nodes. Finally,
cluster node can be rebooted according to requested reboot type using Kareboot.

Analysis: Kadeploy is used for configuration, installation and deployment of an
operating system on Grid’5000 4. Selection of resources for deployment is done by
user. Installation and configuration of the files and launch is done some specific Kade-
ploy tools. Specific tool for each phase is mentioned in Figure 4.5.

4.3.3 Warewulf

Warewulf is a cluster implementation toolkit that manages and distributes Linux to
any number of nodes by using a simple master/slave relationship technique.

Warewulf facilitates the process of installing a cluster and long term administration
from one master. Warewulf requires at least one network interface for cluster use. This
interface will reside on a private physical network that all nodes are connected to and
thus automate the distribution of the node file system during node boot. It allows a
central administration model for all slave nodes and includes the tools needed to build
configuration files, monitor, and control the nodes.

Warewulf has several dependencies 5 (other software that is required on the system
for Warewulf to run properly).

Before doing any Warewulf configuration, master node should be fully configured.

4https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
5http://www.warewulf-cluster.org/cgi-bin/trac.cgi/wiki/DepInstall
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Everything should be working (hardware, software, added correct drivers and con-
figured all network addresses etc.) on master node before slaves (other nodes of the
cluster) configuration and installation can be started. The single image is propagated
to the nodes via network or CD ROM booting.

Warewulf deploy Linux on cluster in six steps. (a)Install GNU/Linux on the mas-
ter node (b) Network boot image is created using a standard chroot’able file system
referred to as a Virtual Node File System (VNFS) (c) Download and install Warewulf
packages. (d) Run Warewulf configuration tools; Masterconf :: configures the master
node, Nodeconf :: configures the VNFS, Dhcp-build :: build dhcpd configuration file
(e) Start Warewulfd process “/etc/init.d/warewulfd start”. (f) Node use etherboot to
obtain a boot image via DHCP and TFTP.

Using Warewulf, High Performance Computing (HPC) packages such as LAM-
MPI/MPICH, SGE, PVM, etc. can be deployed throughout the cluster. Warewulf is
also used for Web clusters (Both HA and load balanced), management of workstations
in LAB (similar to the LTSP Project), disk IO clusters, databases, security (active/inline
intrusion detection and vulnerability scanning clusters), etc.

Analysis: Warewulf uses master/slave technique for operating system installation
on specific nodes. Using the concept of VNFS, the network boot image is created and
then from one specific node the image is propagated to other machines. Warewulf
uses some tools to configure master node and to build DHCP configuration file.

4.4 Conclusion

No general deployment tool exists, mostly deployment tools deploy specific middle-
ware or application components. For all tools, the information about resources has to
be given manually, as none of the deployment tool have automatic resource discovery
mechanism. Only two tools have the deployment planning mechanism. Resource se-
lection is mostly user defined or all the discovered resources are selected as to be the
part of the platform (that is to be deployed).

System deployment tools have not automatic resource discovery and planning
mechanism. The selected resources are defined manually either by user or adminis-
trator. Presented system deployment are different from each other in many ways. For
example, Kadeploy can deploy many operating systems (Linux, Solaris, Windows)
where as Warewulf can deploy only Linux and that also in a master slave fashion.
With Warewulf other HPC packages can also be deployed on cluster which is not pos-
sible with Kadeploy or DTK. In Warewulf master node provides interactive logins
and job queuing to slaves and act as gateway between Internet and cluster network.
It provides central management for all nodes. Slave nodes are only available on pri-
vate cluster network and optimized for computation. Main drawback of Warewulf is
a single point failure on master node. Where as Kadeploy and DTK deploy operating
system on cluster by copying the boot image on each node of the cluster. Kadeploy
deploy operating system n any type of cluster node where as DTK deploy operating
system on only Dell server clusters.
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From the information presented in this chapter it is clear that a generic deployment
tool and a deployment planning tool is needed to transparently avail the power of
computational grid and facilitate the end users to easily access computing power of
grid.
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Chapter 5

Distributed Interactive Engineering
Toolbox

In previous Part I, we have presented an overview of some existing NES environ-
ments, with the scheduling algorithms specific for client-server systems and some de-
ployment tools. In this chapter we presents in detail about a specific grid middleware
called Distributed Interactive Engineering Toolbox (DIET), that we used to verify our
deployment planning methods and techniques presented in Part III.

DIET [24] is a toolkit for building applications based on remote computational
servers. The goal of DIET is to provide a sufficiently simple interface to mask the
distributed infrastructure while providing users an access to greater computational
power.

5.1 Introduction to DIET

DIET is developed by GRAAL 1 team at École Normale Supérieure de Lyon. DIET
project is started in 1997 and is available for all flavors of UNIX 2 . DIET is implemented
using C++ programming language.

DIET consists of a set of elements (agents and servers) that can be used together to
build applications using the GridRPC paradigm. DIET has hierarchical arrangement
of its components to provide scalability. Communication between components are
performed by CORBA. DIET is able to find an appropriate server according to the in-
formation given in the client’s request (problem to be solved, size of the data involved),
the performance of the target platform (server load, available memory, communication
performance) and the local availability of data stored during previous computations.
Schedulers (agents) are distributed using several collaborating hierarchies connected
either statically [33] or dynamically [25].

1http://graal.ens-lyon.fr/
2http://graal.ens-lyon.fr/DIET

65

http://graal.ens-lyon.fr/DIET


66 CHAPTER 5. DIET

5.1.1 DIET design principles

The aim of DIET is to provide a toolbox that will allow different applications to be
ported efficiently over the grid and to allow research teams to validate theoretical
results on scheduling or on high performance data management for heterogeneous
platforms. DIET design follows below mentioned principles.

Scalability: When the number of requests grows, the agent becomes the bottle-
neck of the platform. The machine hosting this component (agent) has to be powerful
enough but the distribution of the scheduling component is often a better solution.
There is of course a trade-off that needs to be found for the number (and location) of
schedulers depending on various parameters such as number of clients, frequency of
requests, number of servers, performance of the target platform, etc.

Simple improvement: The goal of a toolbox is to provide a software environment
that can be easily adapted to match users’ needs. Several API have to be carefully
designed at the client level, at the server level, and sometimes even at the scheduler
level. These API will be used by expert developers to either plug a new application on
the grid or to improve the tool for an existing application.

Ease of development: The development of such large environment needs to be
done using existing middleware that will ease the design and that will offer good
performance at a large scale. DIET uses CORBA as a main low level middleware
(OmniORB), LDAP, and several open-source software suites like NWS, OAR, ELAGI,
SimGrid, etc.

5.1.2 Architecture of DIET

DIET architecture is an hierarchy of agents to provide greater scalability for scheduling
client requests on available servers. The collection of agents uses a broadcast / gather
operation to find and select amongst available servers while taking into account loca-
tions of any existing data (which could be pre-staged due to previous executions), the
load on available servers, and application-specific performance predictions. The main
components of DIET [81] are clients, agents and servers, shown in Figure 5.1.

The client is the application interface by which users can submit problems to DIET.
Users can access DIET via different kinds of client interfaces: web portals, PSEs such
as Scilab, or from programs written in C or C++. Many clients can connect to DIET
at once and each can request the same or different types of services by specifying
the problem to be solved. Clients can use either the synchronous interface where the
client must wait for the response, or the asynchronous interface where the client can
continue with other work and be notified when the problem has been solved.

The Master Agent (MA) serves as the main portal to the DIET hierarchy. The MA
must be launched before all other agents and servers. All agents and servers are there-
after attached to the MA via a tree at launch-time, though the type of tree is not con-
strained. All other agents are called Local Agents (LA) and can be included in the hier-
archy for scalability or to provide a better mapping to the underlying network archi-
tecture. Servers (SeDs) are attached to each computational resource and either perform
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Figure 5.1: Architecture of DIET.

the actual computation directly or launch another binary to perform the computation
(e.g. in the case of a server on a front-end node of a batch system). Servers also aid
in the scheduling process by providing performance predictions to agents during the
server selection process. While the top of the tree must be an MA, any number of LAs
can be connected in an arbitrary tree and servers can be attached to the MA or to any
of the LAs.

5.1.3 Deployment of DIET

The DIET platform is constructed following the hierarchy of agents and SeDs. Initially
the naming service should be deployed, so that all the launched elements can easily
find each other. To find the element of interest, the searching element needs only
to know the port at which the naming service can be found, hostname and a string-
based name for the element of interest. As a benefit of this approach, multiple DIET
deployments can be launched on the same group of machines without conflict as long
as the naming service for each deployment uses a different port and/or a different
machine.

Figure 5.2 provides an overview of steps of the DIET’s element deployment. After
the naming service, the MA is launched; the MA is the root of the DIET hierarchy
and thus does not register with any other elements. Then either an LA or a SeD can be
deployed as a child of the MA. If an LA is connected to the MA then another LA or SeD
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can be connected to this LA. The bottom of the DIET hierarchy consists of SeDs. Once
the DIET system is deployed, clients can connect themselves to the MA and submit
their task for execution.

MAMA

LA LA LA

LA

LA

LA

MA MA MA

(3) (4) (5)

Client

MA

(1) (2)

Figure 5.2: Launch of a DIET platform.

5.1.4 Task execution in DIET

Task execution in DIET proceeds in two phases. In the scheduling phase the DIET client
(1)submits the problem (request) to the MA. Agents maintain a simple list of sub-trees
containing a particular service; thus the MA (2) check for all the mandatory informa-
tion of the task so as (3) broadcasts the request on all sub-trees containing that service.
(4) Other agents in the hierarchy perform the same operation, forwarding the request
on all eligible sub-trees. When the request reaches the server-level, each server calls
their local FAST [39] service to (5) predict the execution time of the request on this
server. These predictions are then (6) passed back up the tree where each level in the
hierarchy (7) sorts the responses to minimize execution time and (8) passes a subset
of responses to the next higher level. Finally, (9,10) the MA returns one or several
proposed servers to the client. In the service phase the client (11) directly connects the
selected server and provides the data for task execution. Once the data is received, a
connection between client and server is re-directed. (12) After finishing the task ex-
ecution, the server re-establishes the connection with the client and the result is sent
back.

This description of the agent/server architecture focuses on the common-case us-
age of DIET. An extension of this architecture is also available [25] that uses JXTA [8]
peer-to-peer technology to allow the forwarding of client requests between MAs, and
thus the sharing of work between otherwise independent DIET hierarchies.

5.1.5 DIET distributed scheduling

Default DIET uses a Round Robin algorithm, which is based on CPU capacity of the
resources to select the appropriate server. In DIET users can use a plug-in scheduler
for SeD selection. The DIET plug-in scheduler [81] works in two steps. First an “eval-
uation table” is generated by each machine. This evaluation table contains the SeD
status information, as different parameters and values of these parameters (as shown
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Figure 5.3: DIET task execution steps.

Parameter Value
Pre_Exe_T ime 3.9

Free_Mem 5000
CPU_load 12

...
...

Table 5.1: Example of a plug in scheduler parametric table.

in table 5.1.5). In second step, a selection of the best SeD is done based on the “se-
lection function”. This selection function is given by the client and according to this
function, a comparison of evaluation tables of different SeDs is done. For example, if
one client needs more memory space and has some particular deadline for its request,
the selection function given by client will be based upon two parameters, execution
time predicted (using FAST [39]) and the free memory space. The SeD that is ranked
best based on this selection function will be selected to execute the client request.

5.1.6 Data management in DIET

Data management is provided to allow persistent data to stay within the system for fu-
ture re-use. This feature avoid unnecessary communication when dependencies exist
between different requests.

DIET has two approaches for data management based on Data Tree Manager (DTM)
[38] and Juxtaposed Memory (JuxMem) [6] integration with DIET.

DIET components have their own DTM. Initially data for the task is provided to
the server. When a task is completed, resulting data can be kept in the environment,
thus implementing data persistency. Depending on the clients request, data results
can be sent back to the client or kept at the server DTM or both. In the second case, the
reference of the data is forwarded to the client. When a DIET server wants to access
some data it uses the data reference given by client to request the data from the DTM.
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With the JuxMem module, when a task is executed its data is sent to JuxMem
and its data reference is sent to the client. The client or server can directly access
the JuxMem to pull the required data using the data reference.

DTM is integrated in DIET and so is easy to use, JuxMem is based on P2P, and thus
is more reliable.

5.1.7 Fault tolerance in DIET

Fault tolerance in DIET is based on a timer mechanism [26]. In order to take into
account servers failure, a time-out is added at the LA level. The value of the timer
represents the time during which DIET waits for the first server’s answer. If no server
responds, the LA replies to its parent that no server is available for the current re-
quest. If at least one server answers, a second timer is started. The purpose of this
second timer is to fix a compromise between the response time of the scheduler and
the aggregation of the answers of different servers. Without this timer, one does not
obtain the most effective server but the one which answered most quickly. Both the
timers depend on the number of servers. The response time can further be optimized
by decreasing the second timer value when the number of server responses increases.

The failure of any agent in the hierarchy could also lead to an infinite wait and the
lost of a branch of the scheduler tree. To avoid such a wait, another timer is set, which
depends on the depth of the tree.

From the client’s point of view, the resource (server) allocated by the MA has to be
reserved. Indeed, if two clients send two requests and the chosen server is the same
(because this server is available during the FAST [39] prediction step), a conflict can oc-
cur. When the second client asks the server for the resolution of its request, the server
can be already working on the first client’s request. To avoid this problem, a time-
stamp mechanism is introduced in the FAST calls, making the resource reservation
sequential.

Component crash make different level of effect on the DIET performance. Crash
of an LA will lead to the lose of a branch of the DIET hierarchy but requests can be
submitted and solved by the other part of the DIET hierarchy. Crash of a server before
selecting a server for task execution will not make a worst effect, as best server from
the other left servers in the hierarchy can be selected. But a server crash after receiving
data from client for request execution will lead to infinite wait for client and if client
has some mechanism to know the server’s crash then the submitted request has to be
submitted again to the DIET hierarchy for execution.

5.2 DIET tools

DIET uses GoDIET [88] for deployment and VizDIET [17] for visualization. DIET
uses CORBA for all communication activities, thus DIET can directly benefit from the
CORBA naming service and CORBA-based logging service called LogService. The
interaction of GoDIET, LogService, and VizDIET is shown in Figure 6.1.
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Figure 5.4: Interaction of GoDIET LogService, and VizDIET assist users in controlling
and understanding DIET platform.

5.2.1 GoDIET

A deployment of DIET is made using the GoDIET tool [88]. GoDIET provides auto-
matic configuration, staging, execution and management of DIET platform. An XML
file describing the hierarchy and requirements is used as an input to GoDIET. For each
component to be launched, configuration file is written on local disk including parent
agent, naming service location, hostname and/or port endpoint. Configuration file
staged remote disk (scp) and remote command launched (ssh). GoDIET3 is written
in Java.

5.2.2 LogService

LogService is a CORBA-based logging service, that provides interfaces for generation
and sending of log messages by distributed components, a centralized service that col-
lects and organizes all log messages, and the ability to connect any number of listening
tools to whom LogService will send all or a filtered set of log messages. LogService is
robust against failures of both senders of log messages and listeners for log updates.
When LogService usage is enabled in DIET, all agents and SeDs send log messages
indicating their existence and a special configurable field is used to indicate the name

3http://graal.ens-lyon.fr/DIET/godiet.html

http://graal.ens-lyon.fr/DIET/godiet.html
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of the element’s parent. Messages can also be sent to trace requests through the system
or to monitor resource performance (e.g. CPU availability on a particular SeD’s host
or the network bandwidth between an agent and a SeD connected to the agent).

5.2.3 VizDIET

Figure 5.5: Screen shot of VizDiet.

VizDIET [17] is a tool that provides a graphical view of the DIET deployment and
detailed statistical analysis of a variety of platform characteristics such as the perfor-
mance of request scheduling and servicing. VizDIET provides good scalability for
DIET platform. VizDIET shows the communication between agents, state of SeD and
available services. CPU, memory and network load can also be seen for each node of
the DIET platform. To provide real-time analysis and monitoring of a running DIET
platform, VizDIET can register as a listener to LogService and thus receives all plat-
form updates as log messages sent via CORBA. Alternatively, to perform visualization
and processing post-mortem, VizDIET uses a static log message file that is generated
during run-time by LogService and set aside for later analysis. Figure 5.5 presents a
screenshot of VizDIET 4.

4http://graal.ens-lyon.fr/DIET/vizdiet.html

http://graal.ens-lyon.fr/DIET/vizdiet.html
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5.2.4 Fast Agent’s System Timer

Fast Agent’s System Timer (FAST) [39, 73] is a dynamic performance forecasting tool
for grid environments. The goal of FAST is to constitute a simple and consistent Soft-
ware Development Kit (SDK) for providing client applications with accurate informa-
tion about task requirements and system performance information, regardless of how
theses values are obtained. The library is optimized to reduce its response time, and to
allow its use in an interactive environment. FAST is not intended to be a scheduler by
itself and provides no scheduling algorithm or facility. It only tries to provide an exter-
nal scheduler with all information needed to make accurate and dynamic scheduling
decisions.
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Figure 5.6: Overview of the FAST architecture.

Figure 5.6 gives an overview of FAST’s architecture, which is composed of two main
modules offering a user API: the static data acquisition module and the dynamic data ac-
quisition module. The former model forecasts the time and space needs of a sequential
computation routine on a given machine for a given set of parameters, while the latter
forecasts the behavior of dynamically changing resources, e.g., workload, bandwidth
or memory use. FAST relies on low–level software packages. First, LDAP [52] is used
to store static data. Then to acquire dynamic data. FAST is essentially based on the
NWS (Network Weather Service) [85], a project initiated at the University of Califor-
nia San Diego and now being developed at the University of Santa Barbara. It is a
distributed system that periodically monitors and dynamically forecasts performance
of various network and computational resources. NWS can monitor several resources
including communications links, CPU, disk space, and memory. Moreover, NWS is
not only able to obtain measurements, it can also forecast the evolution of the moni-
tored system.

FAST extends NWS as it allows to determine theoretical needs of computation rou-
tines in terms of execution time and memory. The current version of FAST only handles
regular sequential routines like those of the dense linear algebra library BLAS [42].
However BLAS kernels represent the heart of many applications, especially in nu-
merical simulation. The approach chosen by FAST to forecast execution times of such
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routines is an extensive benchmark followed by a polynomial regression. Indeed this
kind of routines is often strongly optimized with regard to the platform, either by
vendors or by automatic code generation [84]. FAST is also able to forecast the use of
parallel routines [27].

5.3 Conclusion

This chapter has presented the overall architecture of DIET, a scalable environment
for the deployment on the grid of applications based on the Network Enabled Server
paradigm. As NetSolve [29] and Ninf [71], DIET provides an interface to the GridRPC
API defined within the Global Grid Forum.

DIET main objective is to improve the scalability of the platform using a distributed
set of agents managing a large set of servers available through the network. By being
able to modify the number of schedulers, it ables to ensure a level of performance
adapted to the characteristics of the platform (number of clients, number and fre-
quency of requests, performance of the target platform). DIET uses VPN (Virtual
Private Networks) and CORBA for secure connections between its client and server
applications.

Data management and scheduling are also an important part of the performance
gain when dependencies exist between requests. The management of the platform is
handled by several tools like GoDIET for the automatic deployment of the different
components, LogService for the monitoring, and VizDIET for the visualization of the
behavior of the DIET’s internals.

Next Chapter 6 presents, DIET deployment tool called GoDIET in detail. We have
used GoDIET to deploy DIET on resources selected by the deployment planning meth-
ods presented in Part III.



Chapter 6

GoDIET: A Deployment Tool for DIET

This chapter presents GoDIET1 [88], an automated approaches for launching and man-
aging hierarchies of DIET [24] agents and servers across computational grids. Tradi-
tionally, users of DIET have either launched agents and servers by hand, or written
scripts to manage the launch. These approaches place serious limitations on the di-
versity, scale, and number of experiments that can be feasibly performed. The launch
of DIET on computational grids presents a number of problems shared with many
other grid solutions: “how to quickly and reliably launch a large number of com-
ponents?”, “how to interface with a variety of resource environments (ranging from
direct execution with ssh to launching via a batch system)?”, “how to regain control
of launched processes to shut them down?”, and “how to identify and react to fail-
ures in the launch process?”. The launch of DIET is further complicated by the fact
that agents and servers must coordinate with the rest of the deployment; specifically,
the chosen hierarchy is encapsulated in agent and server configuration files and the
launcher must ensure that parent agents are fully functional before launching agents
and servers that are further down in the hierarchy.

6.1 Working of GoDIET

GoDIET is designed to automate the deployment of DIET platforms and associated
services for diverse grid environments. Key goals of GoDIET included portability, the
ability to integrate GoDIET in a graphically-based user tool for DIET management,
and the ability to communicate in CORBA with LogService [24]. GoDIET is imple-
mented in Java as it satisfies all of these requirements and provides rapid prototyping.

GoDIET automatically generates configuration files for each DIET element while
taking into account of user configuration preferences and the hierarchy defined by the
user, launches complimentary services (such as a name service and logging services),
provides an ordered launch of components based on dependencies defined by the hi-
erarchy, and provides remote cleanup of launched processes when the deployed plat-
form is to be destroyed. Figure 6.1 shows the working step of GoDIET and interaction

1http://graal.ens-lyon.fr/DIET/godiet.html
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Figure 6.1: Working steps of GoDIET.

steps of a client with DIET deployed platform.
GoDIET basic user interface is a non-graphical console mode and can be used on

any machine where Java is available and where the machine has ssh access to the
target resources used in the deployment. An alternative interface is a graphical con-
sole that can be loaded by VizDIET [17] to provide an integrated management and
visualization tool. Both the graphical and non-graphical console modes can report a
variety of information on the deployment including the run status and, if running, the
PID of each component, as well as whether log feedback has been obtained for each
component.

scp and ssh are used to provide secure file transfer and task execution. ssh is
a tool for remote machine access that has become almost universally available on
grid resources in recent years. With a carefully configured ssh command, GoDIET
can configure environment variables, specify the binary to launch with appropriate
command line parameters, and specify different files for the stdout and stderr of the
launched process. Additionally, for a successful launch GoDIET can retrieve the PID
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of the launched process; this PID can then be used later for shutting down the DIET
deployment. In the case of a failure to launch the process, GoDIET can retrieve these
messages and provide them to the user. To illustrate the approach used, an example
of the type of command used by GoDIET follows.

/bin/sh -c ( /bin/echo✂

"export PATH=/home/user/local/bin/:$PATH ; ✂

export LD_LIBRARY_PATH=/home/user/local/lib ; ✂

export OMNIORB_CONFIG=

/home/user/godiet_s/run_exp01/omniORB4.cfg;✂

cd /home/user/godiet_s/run_exp01;✂

nohup dietAgent ./MA_0.cfg < /dev/null

> MA_0.out 2> MA_0.err &" ; ✂

/bin/echo ’/bin/echo ${!}’ ) ✂

| /usr/bin/ssh -q user@grid5000.ens-lyon.fr /bin/sh -

It is important that each ssh connection can be closed once the launch is complete
while leaving the remote process running. If this can not be achieved, the machine on
which GoDIET is running may eventually run out of resources (typically sockets) and
refuse to open additional connections. In order to enable a scalable launch process,
the above command ensures that the ssh connection can be closed after the process is
launched. Specifically, in order for this connection to be close-able: (1) the UNIX com-
mand nohup is necessary to ensure that when the connection is closed the launched
process is not killed as well, (2) the process must be put in the background after launch,
and (3) the redirection of all inputs and outputs for the process is required.

DIET provides the features and flexibility to allow a wide variety of deployment
configurations, even in difficult network and firewall environments. For example,
for platforms without DNS-based name resolution or for machines with both private
and public network interfaces, elements can be manually assigned an endpoint host-
name or IP in their configuration files; when the element registers with the naming
service, it specifically requests this endpoint be given as the contact address during
name lookups. Similarly, an endpoint port can be defined to provide for situations
with limited open ports in firewalls. These specialized options are provided to DIET
elements at launch time via their configuration files; GoDIET supports these configu-
ration options via more user-intuitive options in the input XML file and then automat-
ically incorporates the appropriate options while generating each element’s configura-
tion file. For large deployments, it is key to have a tool like GoDIET to make practical
use of these features.

6.2 Identification of failure in element launch

An important aspect of a deploying platform administration tool is the ability to iden-
tify and react to errors in the deployment process. When GoDIET identifies an error
in the launch of a particular element, it analyzes the elements of the hierarchy that
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have not yet been launched and only launches those elements that do not depend on
the failed element. For example, if the naming service launch fails, GoDIET will not
launch any other elements because all other elements depend on this service. Simi-
larly, if any agent’s launch is failed, the bottom subtree hierarchy elements will not
be launched. This reactivity saves the user time because time is not wasted trying to
launch elements that will fail anyway.

GoDIET can identify errors in the launch process in two ways. First, if errors are
reported on standard error during the launch of an element, GoDIET reports these
errors to the user and marks the launch of the element as confused because GoDIET can
not be sure of the status of the element; unlaunched elements are marked with a launch
status of none and correctly launched elements have a status of running. Second, if the
user has requested that LogService be launched, GoDIET registers with LogService for
traces concerning all running elements. Thus, after the launch of each element GoDIET
waits for feedback from LogService concerning the health of the launched element. If
LogService does not report that an element has launched successfully, GoDIET marks
the log state of that element as confused. The verification of launch state is a useful tool
for monitoring the health of the deployment because it is always available regardless
of whether the user chooses to deploy LogService or not. However, the availability of
LogService provides a much stronger verification on launch state because many more
types of errors can be caught using this log feedback.

6.3 XML file as an input

As input GoDIET requires an XML file, in which users describe their available com-
pute and storage resources and the desired overlay of agents and servers onto those
resources. In short, the GoDIET XML file contains the description of DIET agents and
servers and their hierarchy, the description of desired complementary services like
LogService, the physical machines to be used, the disk space available on these ma-
chines, and the configuration of paths for the location of needed binaries and dynam-
ically loadable libraries. The file format provides a strict separation of the resource
description and the deployment configuration description; the resource description
portion must be written once for each new grid environment, but can then be re-used
for a variety of deployment configurations.

Document Type Definition (DTD) file is used to provide automated enforcement
of allowed XML file semantics; an input XML file is verified against the GoDIET DTD
using a validating parser.

From Figure 6.2 it can be seen that diet_configuration markups surround all
of the other sections. diet_configuration can optionally contain a goDiet sec-
tion to allow configuration of GoDIET behavior. diet_configuration must con-
tain three subsections: the resources section, the diet_services section and the
diet_hierarchy section.

In goDiet section, four tags can be defined. “debug” controls the verbosity of
goDIET output from: 0 (no debugging) -> 2 (very verbose), “saveStdOut” controls
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<?xml version=" 1 . 0 " standalone="no" ?>
< !DOCTYPE diet_configurat ion SYSTEM " devel /GoDIET−2 . 0 . 0 /GoDIET . dtd ">
<diet_configurat ion>

<goDiet debug=" 1 " saveStdOut="no" saveStdErr ="no" useUniqueDirs="no" / >
<resources >

< s c r a t c h dir=" / homePath / user / scra tch_godiet " / >
<storage label=" g5kBordeauxDisk ">

< s c r a t c h dir=" / homePath / user / scratch_runtime " / >
<scp server=" f r o n t a l e . bordeaux . grid5000 . f r " login="pkchouhan" / >

< / s torage>
.
.
<s torage label=" g5kOrsayDisk ">

< s c r a t c h dir=" / homePath / user / scratch_runtime " / >
<scp server=" f r o n t a l e . orsay . grid5000 . f r " login="pkchouhan" / >

< / s torage>
< c l u s t e r label=" g5kBordo" disk=" g5kBordeauxDisk " login="pkchouhan">

<env path=" / homePath / user /demo/ bin " LD_LIBRARY_PATH=" / homePath / user /demo/ l i b " / >
<node label="node−1.bordeaux . grid5000 . f r ">

<ssh server="node−1.bordeaux . grid5000 . f r " / >
< / node>

.

.
<node label="node−47. bordeaux . grid5000 . f r ">

<ssh server="node−47. bordeaux . grid5000 . f r " / >
< / node>

< / c l u s t e r>
.
.

< c l u s t e r label=" g5kOrsay " . . >
.
.

< / c l u s t e r>
< / resources >
< d i e t _ s e r v i c e s >

<omni_names contac t =" gdx0005 . orsay . grid5000 . f r " port=" 2809 ">
<config server=" gdx0005 . orsay . grid5000 . f r " remote_binary ="omniNames" / >

< / omni_names>
< l o g _ c e n t r a l>

<config server=" gdx0007 . orsay . grid5000 . f r " remote_binary =" LogCentral " / >
< / l o g _ c e n t r a l>
<log_tool>

<config server=" gdx0007 . orsay . grid5000 . f r " remote_binary ="DIETLogTool " / >
< / log_tool>

< / d i e t _ s e r v i c e s >
<diet_hierarchy>

<master_agent label="MA1">
<config server="node−5. toulouse . grid5000 . f r " remote_binary =" dietAgent" / >
<local_agent label="LA1">

<config server="node−75. sophia . grid5000 . f r " remote_binary =" dietAgent" / >
<SeD label="SeD1">

<config server="node−65. sophia . grid5000 . f r " remote_binary =" BLASserver " / >
< /SeD>

.

.
<SeD label="SeD89">

<config server="node−34. sophia . grid5000 . f r " remote_binary =" BLASserver " / >
< /SeD>

< / local_agent>
.
.

< local_agent label="LA8">
<config server="node−30. lyon . grid5000 . f r "

.

.
</ loca l_agent>

< / master_agent>
< / die t_hierarchy>

< / die t_configurat ion>

Figure 6.2: An example of GoDIET XML file.
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whether stdout is redirected to /dev/null or to a file in your remote scratch space
called <componentName>.out., “saveStdErr” controls whether stderr is redirected to
/dev/null or to a file in your remote scratch space named <componentName>.err.,
“useUniqueDirs” specifies that a unique subdirectory will be created under the scratch
space on each machine for all files relevant to the run. If no, all files are written in the
scratch directly.

The resources section defines “what machines to use for computation and stor-
age?”, “how to access those resources?”, and “where to find binaries and libraries on
each machine?”. It must include at least one “scratch" section, one “storage" section,
and one “compute" or one “cluster" section. “compute" tag is used for description of
individual machines, “cluster" is to simplify description of large numbers of machines.

The diet_services section must contain one “omni_names" section and can op-
tionally include one “log_central" and one “log_tool" section. The diet_hierarchy
section defines the deployment hierarchy and must include at least one “master_agent"
section and one “SeD" section.

6.4 Evaluation of performance and efficacy

Experiments are designed to evaluate the performance and efficacy of GoDIET for the
deployment of DIET and associated services at a large scale, the accuracy of GoDIET in
identifying errors in the deployment, and the performance of deployments optimized
for homogeneous workloads under mixed workload scenarios.

Experiments are done on different sites of Grid’5000, a set of distributed compu-
tational resources in France. Table 6.1 provides details of the Grid’5000 sites that we
used for our experiments. An abstract example of an XML file used for experiments
is shown in Figure 6.2. All tests were performed using the DGEMM application, a sim-
ple matrix multiplication provided as part of the Basic Linear Algebra Subprograms
(BLAS) package [32].

Site Cluster Nodes Memory Processor Type
Bordeaux bordeaux 48 2 GB dual AMD Opteron 248 2.2GHz
Lille lille 49 4 GB dual AMD Opteron 248 2.2GHz
Lyon lyon 56 2 GB dual AMD Opteron 246 2.0GHz
Orsay gdx 216 2 GB dual AMD Opteron 246 2.0GHz
Rennes Paraci 64 2 GB dual Intel Xeon 2.4 GHz
Sophia azur 103 2 GB dual AMD Opteron 246 2.0GHz
Toulouse toulouse 57 2 GB dual AMD Opteron 248 2.2GHz

Table 6.1: Description of the Grid’5000 clusters used in our experiments.
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6.4.1 Evaluation of launch performance

From this experiment we want to test the time required by GoDIET to launch DIET
deployments of different sizes. A key activity for GoDIET during launch is to deter-
mine when an element has finished launching and registering itself with the naming
service; only once these processes are done can GoDIET launch dependent elements.
There are two approaches used to define timing of dependent element launch.

Fixed wait: This is the simplest approach, and involves simply sleeping for a fixed
period before launching dependent components. Our experiments are performed with
a wait of 3 seconds after omniNames and LogCentral, 2 seconds after each agent, and
1 second after each server.

Feedback: This approach uses real-time feedback from LogService to guide the
launch process. GoDIET waits for verification that a component has registered with
the logging service before launching other components.

For these experiments, the type of DIET hierarchy is fixed and we vary the number
of sites (and therefore the number of servers) to be deployed. We obtained access
to a subset of the machines at each cluster listed in Table 6.1: 30 nodes at Lyon, 40
nodes at Bordeaux, 40 nodes at Lille, 50 nodes on the Rennes Paraci cluster, 50 nodes
at Toulouse, 90 nodes at Sophia, and 140 nodes at Orsay; thus we had 440 nodes in
total. We defined our hierarchy to be composed of an MA on the cluster Lyon and an
LA on each of the other sites in the deployment; all remaining nodes were allocated as
SeDs attached to the LA at their site. To test the performance of GoDIET for different
deployment sizes, we first test a deployment using only the smallest site (1 MA, 1 LA,
and 28 SeDs total), then a deployment using the three smallest sites (1 MA, 3 LAs, and
102 SeDs total), and so on until we have tested a deployment using all 7 of the sites (1
MA, 7 LAs, and 426 SeDs total). We test the time required for GoDIET to launch each
of these deployments using the fixed wait approach and using the feedback approach.
Fig. 6.3 presents the time required to launch these different platforms.

The time for launch is strongly dependent on the number of servers included in the
deployment. The cost of the fixed wait approach is clearly high relative to the cost of
the feedback approach in this environment. Grid’5000 benefits from top-level machines
and networks and relatively little competition for resources among users; in this envi-
ronment our selection of fixed wait times of several seconds between elements is likely
overgenerous and the feedback approach receives notifications very quickly. However,
in more difficult network environments these times may be too short. The feedback
approach is clearly preferable because it automatically controls dependent element
launch based on feedback from previous launches and so does not require user inter-
vention to guess the correct amount of wait time.

6.4.2 Launch problem identification

Once a platform has been launched by GoDIET, we want to verify that the platform
was indeed correctly launched. We are also interested in “how accurately GoDIET
identifies problems in the platform based on launch-time errors and/or LogService
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Figure 6.3: The time for platform launch as a function of the number of servers desired.

feedback?”. Thus, we did platform verifications on all deployments from Section 6.4.1.
For these experiments we take advantage of one of the DIET scheduling modes

that provides round-robin allocation of tasks to SeDs. To test the performance of a
deployment with S servers, we run S clients against that deployment. If we have S
valid scheduler responses from the agent hierarchy, then we consider that the agent
hierarchy is running well. We then verify that each of the S requests was assigned a
unique server (as required by our choice of round-robin). If so, and if the servicing
phase of all S requests completed successfully, we consider all S servers to be func-
tioning correctly. If less than S unique servers were used to service the S requests, we
know some servers or their parent agents were not functioning correctly.

Note that DIET provides best-effort round-robin scheduling and under cases of
high rates of arrival of competing client requests, sometimes DIET is not able to pro-
vide strict round-robin behavior. Thus, to ensure strict round-robin behavior our test-
ing script only launches a single client at a time; under these conditions, round-robin

Approach Sites Rep. 1 Rep. 2 Rep. 3
Fixed wait 1 0/0 0/0 0/0

3 0/0 0/0 1/40
5 1/50 0/49 0/39
7 2/91 1/129 -

Feedback 1 0/0 0/0 0/0
3 1/1 0/0 0/0
5 0/0 0/0 0/0
7 2/30 1/29 -

Table 6.2: Problem SeDs as identified by GoDIET / by clients.
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behavior is strictly enforced by DIET.

For each deployment we also identified how many errors GoDIET reported to the
user, for comparison against the number of errors seen via the above verification test.
In the fixed wait approach a server is marked as failed if its launch seemed to have
failed, while in the feedback approach a server is marked as failed if either its launch
failed or log feedback was received for it.

Table 6.2 provides a summary of our analysis of problematic SeDs in the deploy-
ments from the previous section. Rep.# refers to number of hierarchy deployment
repetition. If values in Rep.# column is represented as x/y then,"x" represents the
number of errors for SeDs seen by GoDIET and "y" represents the number of errors
found by the client submission verification tests. An "-" means couldn’t get the exper-
iment.

The majority of deployments had no errors at all: all agents and SeDs were func-
tioning correctly; this result is promising in terms of the stability and usability of
Grid’5000 since such large resource sets typically have some number of unexpected
run-time problems. However, when there are problematic SeDs, GoDIET does not ef-
fectively estimate the scale of the problem. In fact, when there are problems they are
often large with as many as 129 problematic SeDs. In all cases, these large numbers of
problems correspond to the size of one of the individual sites in our deployment, so
we believe that these errors are site-level errors corresponding to a failed local agent at
that site or a transitory problem with the site itself (such as a temporary network par-
tition). In any case, we plan to improve GoDIET to better identify these problems so
that DIET administrators and users can be better informed about the platform status.

Figure 6.4: Grid’5000 DIET Deployment with 1 MA, 8 LAs, 574 SeDs.
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Cluster SeDs Launch time (secs)
Bordeaux 44 70
Lille 44 118
Lyon 49 52
Orsay 176 88
Paraci 59 82
Parasol 59 81
Sophia 89 68
Toulouse 54 33

Table 6.3: Time taken to launch 574 SeDs is 592 secs.

6.4.3 DIET deployment on 585 nodes

From the results of different GoDIET launch approaches, we have selected the feed-
back approach to deploy DIET on a hierarchy of 585 nodes. This experiment was
done on 7 sites/8 clusters (Bordeaux, Lille, Lyon, Orsay, Rennes, Sophia, Toulouse)
of Grid’5000. OmniNames and log_central were launched at Orsay. The hierarchy is
composed of an MA on the cluster Orsay and an LA on each of the 8 clusters. All other
reserved nodes were added as servers to the LA on that cluster. GoDIET was located
on a machine in the Lyon cluster. The time taken to launch this deployment is 7min-
utes 25secs. The time taken to launch SeDs on each cluster is shown in Table 6.3. By
comparing the time taken to launch the deployment and the sum of the launch time of
SeDs on each site, it can be seen that parallel launching of elements is done by GoDIET
on different sites and saved overall launch time.

6.5 Conclusion

We have presented an overview and experimental results of GoDIET [88], an auto-
mated approaches for launching and managing hierarchies of DIET [24] agents and
servers across computational grids. GoDIET automatically generates configuration
files for each DIET component taking into account user configuration preferences and
the hierarchy defined by the user, launches complimentary services (such as a name
service and logging services), provides an ordered launch of components based on
dependencies defined by the hierarchy, and provides remote cleanup of launched pro-
cesses when the deployed platform is to be destroyed.
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Middleware Deployment Planning
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Chapter 7

Heuristic to Structure Hierarchical
Scheduler

To efficiently use the computing power of distributed resources, middlewares are de-
veloped. However, the method to deploy the middleware elements on distributed
resources is mostly defined by user or by administrator. Deployment tools mentioned
in Chapter 4 deploy a given platform. None of the tool can select appropriate re-
sources for deployment from a pool of resources. Selection of a resource among a set
of resources for a particular middleware element is based on the knowledge about the
middleware and the resource. As the throughput of deployed platform depends on
the type of application being submitted to the platform. So for end users it becomes
very cumbersome task to select a good middleware deployment depending upon the
characteristics of the application and power of the resources. An expert may select a
good deployment in reasonable time.

In this chapter we presents an heuristic to deploy middleware on homogeneous
resources. We call this process as deployment planning, a planning needed to arrange
the resources in such a manner that when deployment of middleware components
will be done, maximum number of requests can be processed by this arrangement
(platform). Validation of our deployment planning heuristic is done by implementing
the heuristic to structure a hierarchical middleware.

7.1 Introduction

The issue of deployment planning for arbitrary arrangements of distributed sched-
ulers is too broad. We focus on hierarchical arrangements, because a hierarchy is a
simple and effective distribution approach and has been chosen by a variety of mid-
dleware environments as their primary distribution approach [24, 34, 49, 74]. Before
trying to optimize deployment planning on arbitrary, distributed resource sets, we
target a subproblem: “what is the optimal hierarchical deployment on a cluster with
hundreds to thousands of nodes?”. This problem is not as simple as it may sound:
one must decide “how many resource should be used in total?”, “how many should
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be dedicated to scheduling or computation?”, and “which hierarchical arrangement of
schedulers is more effective i.e., more schedulers near the servers, near the root agent,
or a balanced approach?”.

In practice, running a throughput test on all deployments to find the optimal de-
ployment is unmanageable; even testing a few samples is time consuming. In this
chapter we provides efficient and effective planning for identifying a good deploy-
ment that will perform well in homogeneous cluster environments. We consider that
a good deployment is one that maximizes the steady-state throughput of the system, i.e.,
the number of requests that can be scheduled, launched, and completed by the servers
in a given time unit. Deployment planning heuristic determines that in which hierar-
chical organization nodes should be arranged so that the goal to maximize steady-state
throughput can be achieved for each node. We also provided algorithms to modify the
obtained hierarchy to limit the number of resources used to the number of available.

Deployment planning heuristic to deploy NES on homogeneous cluster is based
on the constraint to maximize the throughput of agent with respect to its children.
We used DIET to validate our deployment heuristic. First we develop detailed per-
formance models for DIET system and validate these models in a real-world environ-
ment. We then present real-world experiments demonstrating that the deployments
automatically derived by our approach are in practice nearly optimal.

7.1.1 Operating models

The architectural model that we consider is a tree-shaped platform. Processors in the
platform can perform three operations in parallel or serial manner. Depending upon
the operating way of the processor authors in [14] have mentioned six different archi-
tectural models, shown in Figure 7.1, where “r” stands for receive, “s” stands for send
and “w” stands for work, i.e. compute. In Figure 7.1, when two squares are placed next
to each other horizontally, it means that only one of them can be accomplished at a
time, while vertical placement is used to indicate that concurrent operation is possi-
ble. “‖” (respectively “,”) is used to indicate parallel (sequential) order of operations
in the models.

M(r∗‖s∗‖w): Full overlap, multiple-port - In this first model, a processor node can
simultaneously receive data from its parent, perform some (independent) com-
putation, and send data to all of its children. This model is not realistic if the
number of children is large.

M(r‖s‖w): Full overlap, single-port - In this second model, a processor node can si-
multaneously receive data from its parent, perform some (independent) compu-
tation, and send data to one of its children. At any given time-step, there are
at most two communications taking place, one from the parent and/or one to a
single child.

M(r‖s, w): Receive-in-Parallel, single-port - In this third model, as in the next two,
a processor node has one single level of parallelism: it can perform two actions
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Figure 7.1: Classification of the operating models.

simultaneously. In the M(r‖s, w) model, a processor can simultaneously receive
data from its parent and either perform some (independent) computation, or
send data to one of its children. The only parallelism inside the node is the pos-
sibility to receive from the parent while doing something else (either computing
or sending to one child).

M(s‖r, w): Send-in-Parallel, single-port - In this fourth model, a processor node can
simultaneously send data to one of its children and either perform some (in-
dependent) computation, or receive data from its parent. The only parallelism
inside the node is the possibility to send to one child while doing something else
(either computing or receiving from the parent).

M(w‖r, s): Work-in-Parallel, single-port - In this fifth model, a processor node can
simultaneously compute and execute a single communication, either sending
data to one of its children or receiving data from its parent.

M(r, s, w): No internal parallelism - In this sixth and last model, a processor node
can only do one thing at a time: either receiving from its parent, or computing,
or sending data to one of its children.

We have considered the sixth model “No internal parallelism“ to present our heuris-
tic.

7.2 Architectural model

The target architectural framework is represented by a weighted graph G = (V, E, w, B).
Each P ∈ V represents a computing resource with computing power w measured
in MFlop/second. There are one or more client nodes Pc that generate requests for
the hierarchy. Each link between two nodes is labelled by the bandwidth value B in
Mb/second.
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Platform nodes: Available nodes can be divided in two types, agents and servers.
A is a set of agents. Agents are the scheduler nodes that coordinate incoming requests
and communicate the requests to the appropriate servers. S is a set of servers. Servers
provide services to clients. Each node P ∈ V can be assigned to either one server or
one agent. When responses are generated by the servers the agents may coordinate
the response. Client nodes are extra then the available nodes for the construction of
hierarchy. Thus, |A| + |S| = |V |.

Task processing: The size of the request forwarded by the agent to its children is
Sin and the size of the response (reply of the request) by each node is Sout. The mea-
suring unit of these quantities is Mb/request. The amount of computation needed by
P ∈ A to process one incoming request is denoted by Win and the amount of computa-
tion needed by P ∈ A to merge the responses from its children is denoted by Wout. In
short Wout is the time needed for sorting the servers. WXSer is the amount of computa-
tion needed by P ∈ S for Xser service. Wpred is the amount of computation needed by
P ∈ S for predicting the computation time of each incoming request.

7.3 Deployment constraints

We consider the steady-state techniques concept [16] for our model because we are
interested in maximizing steady-state throughput. In steady-state techniques, the per-
formance of the startup and shutdown phases are not considered. The initial integer
formulation is replaced by a continuous or rational formulation. The main idea is to
generate the hierarchy when each resource is performing all (sending, receiving and
computation) tasks during each time-unit.

The overall throughput of the system depends on the bandwidth of the links, mes-
sage size of requests, time spent computing by each node on each request, and the
computing power of the nodes. Therefore, we have the following constraints:

Computation constraint for agent: As an agent uses its computing power for treat-
ing two type of jobs (requests and responses), the throughput of agent according to its
computing power can be derived from Equation (7.1).

∀P ∈ A :
w

W in + W out
(7.1)

So we re-organize Equation (7.1) to represent the number of requests computed by
an agent as Nodecomp in Equation (7.2). The following equation states that the sub-tree
throughput can not be larger than the throughput of the agent.

Nodecomp ≤
w

Win + Wout
, ∀P ∈ A (7.2)

Communication constraint for agent: Depending on the physical network, band-
width link is either shared by incoming and outgoing data or bandwidth is fully du-
plex. Depending on the type of bandwidth utilization either of the two equations rep-
resented as Equation (7.3) will be used to calculate the number of requests transmitted
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per time-unit along each link.

Commreq ≤
B

Sin + Sout

||min(
B

Sin

,
B

Sout

), ∀links (7.3)

Computation constraint for server: As server also use its computing power in
treating two jobs (prediction and real execution), so the number of requests that can
be calculated by a P ∈ S in a time step is given by Equation (7.4).

Servercomp ≤
w

WXser+Wpred

, ∀P ∈ S (7.4)

Servers have no communication constraint because servers are the leave of the tree
and servers have no child to communicate. Servers communication with its parent
agent is taken into consideration in agent’s communication constraint.

7.4 Deployment construction

For hierarchical deployment construction, we consider that when the response sent by
an agent and a server is same in format and size then an agent can have same number
of children irrespective of children type (server or agent). But if the format and size of
the reply from agents and servers is different then number of servers supported by an
agent will be different from the number of agents supported by an agent. For example,
if server sends the task’s prediction with its status as reply to its parent agent and an
agent just sent the list of sorted servers to its parent agent then the number of agents
supported by the parent agent will be different from the number of server children
supported by it. The maximum nodes that can be connected to agent nodes without
making it bottleneck can be calculated from the constraints mentioned in Section 7.3
as shown below.

Number of servers supported by an agent: MSPA (Maximum Servers Per Agent)
represents the maximum number of servers that can be supported by a node P ∈ A.

MSPA =
Nodecomp

min(Servercomp, Commreq)
(7.5)

Number of agents supported by another agent: The maximum number of agents
that can be added to another agent is given as MAPA (Maximum Agents Per Agent).

MAPA =
Nodecompi

min(Nodecompj
, Commreq)

, Pi, Pj ∈ A (7.6)

We differentiate Pi and Pj as two different nodes even though they are from same
set because this equation can be used to calculate the number of intermediate nodes
supported by the other nodes by differing the set of Pi and Pj for some NES like DIET.

As the throughput of the platform can be a rational, so the values of MAPA and
MSPA are not necessarily integers, they could be rational too. To make these values
integers we use either round up or round down. The simple method that we consider
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is according to the available number of nodes. If we have enough available nodes we
round up, otherwise we round down.

Level of the hierarchy is denoted by l. The total number of nodes required for the
hierarchy is n_req and can be calculated as follows.

n_req =

l∑

k=0

MAPAk + MAPAl × MSPA (7.7)

The hierarchy is constructed using Algorithm 7.1. This algorithm uses Algorithm 7.2
and Algorithm 7.3 to use no more than the number of available nodes.

Algorithme 7.1 Construction Algorithm
1: calculate MSPA using Equation (7.5)
2: calculate MAPA using Equation (7.6)
3: l = 0, n_req=0
4: while n_req < n do
5: n_reqlow = n_req
6: calculate n_req using Equation (7.7)
7: l + +
8: l −− , n_reqhigh = n_req
9: if (n − n_reqlow) > (n_reqhigh − n) then

10: call Make_Hierarchy
11: call Node Removal Algorithm 7.2 with extra_nodes = n_reqhigh − n
12: else
13: l −−
14: call Make_Hierarchy
15: call Node Addition Algorithm 7.3 with extra_nodes = n − n_reqlow

Procedure: Make_Hierarchy
1: Add an agent
2: while l > 0 do
3: add MAPA agents to (lowest level) agent without children
4: l −−
5: add MSPA servers to (lowest level) agent without children

7.5 Model implementation for DIET

We make some assumptions to use DIET for heuristic validation. The MA and LA
are considered as having the same performance. We assume that an agent can con-
nect either agents or servers but not both. Root of the tree is always an MA. Thus all
clients will submit their request to the DIET hierarchy through one MA. When client
requests are sent to the agent hierarchy, DIET is optimized such that large data items
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Algorithme 7.2 Node Removal Algorithm
1: while (extra_nodes > 0) do
2: if extra_nodes < MSPA then
3: remove extra_nodes from the one of the bottom agents. Exit
4: else if (extra_nodes == MSPA || extra_nodes == MSPA + 1 ) then
5: remove one bottom agent with all its servers. Exit
6: else
7: remove_agent = extra_nodes mod MSPA
8: if remove_agent > (MAPA × MSPA) + MAPA then
9: remove MAPA agents with all its servers.

10: add MSPA /* servers to the agent that now have neither agent nor server connected to
it*/

11: left_nodes = extra_nodes − ((MAPA × MSPA) + MAPA) + MSPA
12: extra_nodes = left_nodes
13: else
14: remove remove_agent agents with all its servers
15: left_nodes = extra_nodes − ((remove_agent × MSPA) + remove_agent)
16: extra_nodes = left_nodes

Algorithme 7.3 Node Addition Algorithm
1: while (extra_nodes > 1) do
2: if all bottom-level agents have maximum number of servers then
3: add one node to the bottom agent
4: add parent servers as his servers
5: extra_nodes −−
6: else
7: if extra_nodes ≤ MSPA then
8: add one agent to the agent having child agents < MAPA
9: add extra_nodes − 1 servers to this newly added agent. Exit

10: else
11: add_agent = extra_nodes mod MSPA
12: if extra_nodes ≥ add_agent + add_agent × MSPA then
13: while (add_agent > 0) do
14: add one agent to the agent having child agents < MAPA
15: add MSPA servers to this new added agent
16: add_agent −−
17: extra_nodes = extra_nodes − add_agent + add_agent × MSPA
18: else
19: add_agent −−
20: go to line 13
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like matrices are not included in the problem parameter descriptions (only their sizes
are included). These large data items are included only in the final request for compu-
tation from client to server. Since we are primarily interested in modeling throughput
for the agent hierarchy as an example of a hierarchical middleware system, we assume
that large data items are already in-place on the server.

7.6 Experimental results

In this section we presents experiments designed to test the ability of deployment
heuristic to correctly identify good real-world deployments that are appropriate to a
given resource environment and workload. We presents the experimental design, the
corresponding parametrization, experiments testing the accuracy of our deployment
performance heuristic; the accuracy is key to provide confidence in the deployment al-
gorithms. These algorithms are tested with experiments comparing the performance
of the best deployment identified by our deployment algorithms against the perfor-
mance of other intuitive deployments.

7.6.1 Experimental design

Software: DIET is used for all deployed agents and servers. The deployment arrange-
ments are defined according to experimental goals and will be described in the follow-
ing sections. Once a deployment has been chosen, GoDIET [88] is used to perform the
actual software deployment.

Job types: Since our performance model and deployment approach focus on max-
imizing steady-state throughput, our experiments focus on testing the maximum sus-
tained throughput provided by different deployments. As an initial study we consider
DGEMM, a simple matrix multiplication provided as part of the Basic Linear Algebra
Subprograms (BLAS) package [32].

Workload: Measuring the maximum throughput of a system is non-trivial: if too
little load is introduced the maximum performance may not be achieved, if too much
load is introduced the performance may suffer as well. Thus we use small quantities
of steady-state load in the form of a client script that uses a continual loop to launch
one request, wait for the response, and then sleep 0.05 seconds. With one client script
there is at most a single request in the system. We then introduce load gradually by
launching one client script every five seconds; four scripts are launched on each of 35
client machines. A full throughput test thus takes 700 seconds.

Resources: For these experiments we used a 55-node cluster at the École Normale
Supérieure in Lyon, France. Each node provided dual AMD Opteron 246 processors @
2 GHz, a cache size of 1024 KB, and 2 GB of memory. All nodes are connected by both
a Gb ethernet and a 100 Mb/s ethernet; unless otherwise noted all communicates were
sent over the Gigbit network. As measured with the Network Weather Service [85],
available bandwidth on this network is 909.5 Mb/s and latency is 0.08 msec.
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Model parametrization: To collect the values needed to calculate MSPA and MAPA,
we measure the performance for a benchmark task (Xser) using a small hierarchy of
one agent and one server. We assume that the maximum throughput of an agent or
a server can be calculated as the inverse of the time required by that element to treat
a single request. Thus we measured the time required to treat a request at the server
level and at the agent level. At the agent-level the processing time depends on the
number of children attached to the agent so we collected benchmarks for a variety of
sizes of star-based hierarchies. We then used a linear fit of the results to generate a sim-
ple model for agent-level throughput as a function of number of children. To measure
data transfer within the hierarchy, we used tcpdump to monitor all data transferred
between elements and ethereal to analyze the data. With these benchmarks we ob-
tained predictions of all the variables that were not known such as WXser

, Win and Wout.
The benefit of this estimation approach is that measurements of the time required to
treat a request are fairly easy to collect and each benchmark can be run in a few min-
utes with only a single client script. However, this approach assumes that there is no
overhead to running requests in parallel and that all resources can be perfectly shared.
Estimates generated in this fashion will therefore tend to overestimate the throughput
of servers and agents.
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Figure 7.2: Star hierarchies with one or two servers for DGEMM 150x150 requests. (a)
Real-world platform throughput for different load levels. (b) Comparison of predicted
and actual maximum throughput.

7.6.2 Performance model validation

The usefulness of our deployment approach depends heavily on the ability to predict
the maximum steady-state throughput of each element in a deployment. This section
presents experiments designed to answer this question.
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Figure 7.3: Star hierarchies with one or two servers for DGEMM 10x10 requests. (a)
Throughput at different load levels. (b) Comparison of predicted and actual maximum
throughput.
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Figure 7.4: Star hierarchies with two servers using a Gb/s or a 100 Mb/s network.
Workload was DGEMM 10x10. (a) Throughput at different load levels. (b) Comparison
of predicted and actual maximum throughput.
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The first test, shown in Figure 7.2, uses a workload of DGEMM150x150 to compare
the performance of two hierarchies: an agent with one server versus an agent with
two servers. For this scenario, the model predicts that both hierarchies are limited
by server performance and therefore, performance will roughly double with the addi-
tion of the second server. These predictions are accurate: the model correctly predicts
the absolute performance of these deployments and also predicts that the two-server
deployment will be the better choice.

Figure 7.3 uses a workload of DGEMM10x10 to compare the performance of the
same one and two server hierarchies. The model correctly predicts that both deploy-
ments are limited by agent performance and that the addition of the second server
will in fact hurt performance. The error in the magnitude of the performance predic-
tion is about 20-30%. We believe that the error in these predictions arises from the
fact that some overhead is introduced by trying to run so many requests in parallel on
the agent machine. Figure 7.4 compares performance using a Gb/s network versus a
100 Mb/s network; two-server hierarchies are used in both cases with a workload of
DGEMM10x10. The model correctly predicts that the network is not the limiting factor
on steady-state performance.

In summary, our deployment performance model is able to accurately predict server
throughput and can predict the impact of adding servers to a server-limited or agent-
limited deployment. The deployment algorithm accuracy could be obtained by ad-
justing our model parametrization to account for the results of this section. How-
ever, adding this adjustment phase to model parametrization greatly complicates the
parametrization phase and we prefer to maintain an approach that could be applied
rapidly to other software and resource environments.
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7.6.3 Deployment selection validation

In this section we test the ability of the deployment algorithm to select an appropriate
arrangement of agents and servers for deployment. We were not able to find alterna-
tive deployment algorithms that could be applied to our scenario as a comparison; in
our experience, given the lack of automatic tools users typically define deployments
by hand using intuition about the scenario. Thus we compare the model-defined de-
ployment against several alternatives that, in our experience, would be reasonable
intuitive choices with users.

We wish to find the deployment on our 50-machine cluster for a workload of
DGEMM150x150. Our deployment algorithm predicts that the deployment uses a top-
level agent and two middle-level agents where each middle-level agent can support 7
servers. This deployment thus contains 14 servers and 17 machines in total. To check
whether the algorithm selected the correct number of servers, Figure 7.5 compares
this Automatic deployment against deployments with the same two-level hierarchy
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of agents but with different numbers of servers. The Larger deployment contains
twice as many servers (14 on each middle-level agent so 28 servers in total) while
the Smaller deployment contains roughly half as many servers (4 on each middle-
level agent so 8 servers in total). The Automatic deployment provides a significantly
higher maximum throughput than the others.

Although it is important that the deployment approach can select an appropriate
number of resources, it is also important that it select an appropriate hierarchy. We
therefore design two alternative deployments that we have found to be typical hierar-
chical styles for users. To remove the effect of the number of servers, we use exactly
14 servers, the number chosen by our approach, for these deployments. The Star de-
ployment uses 14 servers attached directly to the top-level agent. The Balanced tries
to balance work amongst the agents by using the same branching factor at all levels of
the hierarchy; for 14 servers the most balanced hierarchy uses a top-level agent with
4 middle-level agents and 3 or 4 servers attached to each mid-level agent. Figure 7.6
shows these three platforms.

Figure 7.7 compares the performance achieved by these three deployments. The
Automatic approach performs the best and provides a significant advantage over
the Star topology. However, the Balanced approach performs almost as well as the
Automatic approach. This result is not surprising: the two hierarchies are in fact
fairly similar in structure.

7.7 Conclusion

In this chapter we have presented an heuristic to determine structure for hierarchi-
cal scheduler for a homogeneous resource platform. Heuristic determines how many
nodes should be used and in what hierarchical organization with the goal of maximiz-
ing steady-state throughput.

The main focus of heuristic is to construct an hierarchy, so as to maximize the
throughput of each node, where this throughput depend on the number of children
a node is connected with, in the hierarchy. Number of children supported by a node
depends on the type of children (server or agent). Thus exact calculation of MAPA
and MSPA is required for correct structure of hierarchical schedulers. Models for cal-
culation of MSPA and MAPA is given for DIET hierarchical scheduler system. Ac-
cordingly the exact number of nodes required to construct the hierarchy is calculated.
Algorithms to use only the available number of nodes in hierarchy construction is also
given.

This chapter provides the first step for automatic middleware deployment plan-
ning on homogeneous cluster. Next chapter provides an optimal algorithm for auto-
matic middleware deployment on homogeneous cluster.
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Chapter 8

Automatic Middleware Deployment
Planning on Clusters

In previous Chapter 7 we have presented an heuristic for hierarchical middleware
deployment for a homogeneous resource. We experimentally validated the heuristic
deployments that are implemented under limited condition, for example, an agent
can have either server or agents as children but not both. Deployment based on
heuristic performed well as compared to other intuitive deployments. However, as
the resources are homogeneous, an optimal deployment is possible. Considering the
middleware deployment phase constraints’ we found an algorithm for optimal mid-
dleware deployment on homogeneous resources.

This chapter explains in detail our optimal middleware deployment planning ap-
proach. In optimal middleware deployment planning approach we have shown that
the optimal arrangement of schedulers is a complete spanning d-ary tree; this result
agrees with existing results in load-balancing and routing from the scheduling and
networking literature. Even we can automatically derive the optimal theoretical de-
gree d for the tree.

Optimal algorithm consider the throughput of each execution phase of the middle-
ware. Optimal algorithm is based on the throughput achieved by the scheduling phase
and servicing phase of the middleware. To test our optimal algorithm, we use DIET
middleware. First we develop detailed performance models for DIET system and val-
idate these models in a real-world environment. We then present real-world exper-
iments demonstrating that the deployments automatically derived by our approach
are in practice nearly optimal and performs significantly better than other reasonable
deployments.

101



102 CHAPTER 8. AUTOMATIC MIDDLEWARE DEPLOYMENT PLANNING ON CLUSTERS

8.1 Platform deployment

8.1.1 Platform architecture

This section defines our target platform architecture; Figure 8.1 provides a useful ref-
erence for these definitions.
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Figure 8.1: Platform deployment architecture and execution phases.

Software system architecture - We consider a service-provider software system
composed of three types of elements: a set of client nodes C that require computations,
a set of server nodes S that is provider of computations, and a set of agent nodes A that
provides coordination of client requests with service offerings via service localization,
scheduling, and persistent data management. The arrangement of these elements is
shown in Figure 8.1. We consider only hierarchical arrangements of agents composed
of a single top-level root agent and any number of agents arranged in a tree below the
root agent. Server nodes are leaves of the tree, but may be attached to any agent in the
hierarchy, even if that agent also has children that are agents.

Since the use of multiple agents is designed to distribute the cost of services such as
scheduling, there is no performance advantage to having an agent with a single child.
The only exception to this policy is for the root-level agent with a single server child;
this “chain” can not be reduced.

We do not consider clients to be part of the hierarchy nor part of the deployment;
this is because at the time of deployment we do not know where clients will be located.
Thus a hierarchy can be described as follows. A server s ∈ S has exactly one parent
that is always an agent a ∈ A, a root agent a ∈ A has one or more child agents and/or
servers and no parents. Non-root agents a ∈ A have exactly one parent and two or
more child agents and/or servers.

Request definition - We consider a system that processes requests as follows. A
client c ∈ C first generates a scheduling request that contains information about the
service required by the client and meta-information about any input data sets, but
does not include the actual input data. The scheduling request is submitted to the
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root agent, which checks the scheduling request and forwards it on to its children.
Other agents in the hierarchy perform the same operation until the scheduling request
reaches the servers. We assume that the scheduling request is forwarded to all servers,
though this is a worst case scenario as filtering may be done by the agents based on re-
quest type. Servers may or may not make predictions about performance for satisfying
the request, depending on the exact system.

Servers that can perform the service then generate a scheduling response. The schedul-
ing response is returned upward to the hierarchy and the agents sort and select amongst
the various scheduling responses. It is assumed that the time required by an agent to
select amongst scheduling responses increases with the number of children it has, but
is independent of whether the children are servers or agents. Finally, the root agent
forwards the chosen scheduling response (i.e., the selected server) to the client.

The client then generates a service request which is very similar to the scheduling
request but includes the full input data set, if any is needed. The service request is
submitted by the client to the chosen server. The server performs the requested service
and generates a service response, which is then sent back to the client. A completed
request is one that has completed both the scheduling and service request phases and
for which a response has been returned to the client.

Resource architecture - The target resource architectural framework is represented
by a weighted graph G = (V, E, w, B). Each vertex v in the set of vertices V repre-
sents a computing resource with computing power w in MFlop/second. Each edge e
in the set of edges E represents a resource link between two resources with edge cost
B given by the bandwidth between the two nodes in Mb/second. We do not consider
latency in data transfer costs because our model is based on steady-state scheduling
techniques [16]. Usually, the latency is paid once for each of the communications that
take place. In steady-state scheduling, however, as a flow of messages takes place
between two nodes, the latency is paid only one time (when the flow is initially es-
tablished) for the whole set of messages. Therefore latency will have an insignificant
impact on our model and so we do not take it into account.

Deployment assumptions - We consider that at the time of deployment we do not
know the client locations or the characteristics of the client resources. Thus clients are
not considered in the deployment process and, in particular, we assume that the set of
computational resources used by clients is disjoint from V.

A valid deployment thus consists of a mapping of a hierarchical arrangement of
agents and servers onto the set of resources V. Any server or agent in a deployment
must be connected to at least one other element; thus a deployment can have only
connected nodes. A valid deployment will always include at least the root-level agent
and one server. Each node v ∈ V can be assigned to either exactly one server s, exactly
one agent a, or the node can be left idle. Thus if the total number of agents is |A|, the
total number of servers is |S|, and the total number of resources is |V|, then |A| + |S| ≤
|V|.
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8.1.2 Optimal deployment

Our objective is to find an optimal deployment of agents and servers for a set of resources
V. We consider an optimal deployment to be a deployment that provides the maximum
throughput ρ of completed requests per second. When the maximum throughput can
be achieved by multiple distinct deployments, the preferred deployment is the one
using the least resources.

As described in Section 8.1.1, we assume that at the time of deployment we do not
know the locations of clients or the rate at which they will send requests. Thus it is
impossible to generate an optimized, complete schedule. Instead, we seek a deploy-
ment that maximizes the steady-state throughput, i.e., the main goal is to characterize
the average activities and capacities of each resource during each time unit.

We define the scheduling request throughput in requests per second, ρsched, as the
rate at which requests are processed by the scheduling phase (see Section 8.1.1). Like-
wise, we define the service throughput in requests per second, ρservice, as the rate at
which the servers produce the services required by the clients. The following lemmas
lead to a proof of an optimal deployment shape of the platform.

Lemma 1. The completed request throughput ρ of a deployment is given by the minimum of
the scheduling request throughput ρsched and the service request throughput ρservice.

ρ = min(ρsched, ρservice)

Proof. A completed request has, by definition, completed both the scheduling request
and the service request phases.

Case 1: ρsched ≥ ρservice. In this case requests are sent to the servers at least as fast
as they can be serviced by the servers, so the overall rate is limited by ρservice.

Case 2: ρsched < ρservice. In this case the servers are left idle waiting for requests
and new requests are processed by the servers faster than they arrive. The overall
throughput is thus limited by ρsched. �

The degree of an agent is the number of children directly attached to it, regardless
of whether the children are servers or agents.

Lemma 2. The scheduling throughput ρsched is limited by the throughput of the agent with
the highest degree.

Proof. As described in Section 8.1.1, we assume that the time required by an agent to
manage a request increases with the number of children it has. Thus, agent through-
put decreases with increasing agent degree and the agent with the highest degree will
provide the lowest throughput. Since we assume that scheduling requests are for-
warded to all agents and servers, a scheduling request is not finished until all agents
have responded. Thus ρsched is limited by the agent providing the lowest throughput
which is the agent with the highest degree. �

Lemma 3. The service request throughput ρservice increases as the number of servers included
in a deployment increases.



8.1. PLATFORM DEPLOYMENT 105

Proof. The service request throughput is a measure of the rate at which servers in a de-
ployment can generate responses to client service requests. Since agents do not partic-
ipate in this process, ρservice is independent of the agent hierarchy. The computational
power of the servers is used for both (1) generating responses to scheduling queries
from the agents and (2) providing computational services for clients. For a given value
of ρsched the work performed by a server for activity (1) is independent of the number
of servers. The work performed by each server for activity (2) is thus also indepen-
dent of the number of servers. Thus the work performed by the servers as a group for
activity (2) increases as the number of servers in the deployment increases. �

For the rest of this section, we need some precise definitions. A complete d-ary tree
is a tree for which all internal nodes, except perhaps one, have exactly d children. If n
is the depth of the tree, the potential internal node with strictly less than d children is
at depth n− 1 and may have any degree from 1 to d− 1. A spanning tree is a connected,
acyclic subgraph containing all the vertices of a graph. We introduce the following
definition to aid later discussions.

Definition 1. A Complete Spanning d-ary tree (CSD tree) is a tree that is both a complete
d-ary tree and a spanning tree.

For deployment, leaves are servers and all other nodes are agents. A degree d of
one is useful only for a deployment of a single root agent and a single server. Note
that for a set of resources V and degree d, a large number of CSD trees can be con-
structed. However, since we consider only homogeneous resources, all such CSD trees
are equivalent in that they provide exactly the same performance.

Definition 2. A dMax set is the set of all trees that can be built using |V| resources and for
which the maximum degree is equal to dMax .

Figure 8.2 shows some examples of trees from the dMax 4 and dMax 6 sets.

dMax=4 dMax=6

Figure 8.2: Deployment trees of dMax sets 4 and 6.

Theorem 1. In a dMax set, all dMax CSD trees have optimal throughput.

Proof. We know by Lemma 1 that the throughput ρ of any tree is limited by either
its schedule request throughput ρsched or its service request throughput ρservice. As
Lemma 2 states that the scheduling request throughput ρsched is only limited by the
throughput of the agent with the highest degree, all trees in a dMax set have the same
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Algorithme 8.1 Algorithm to construct an optimal tree.
1: calculate best_d using Theorem 2
2: Add the root node
3: if best_d == 1 then
4: add one server to root node
5: Exit
6: availNodes = |V| − 1
7: level = 0
8: while availNodes > 0 do
9: if ∃ agent at depth level with degree 0 then

10: toAdd = min(best_d, availNodes)
11: add toAdd children to the agent
12: availNodes = availNodes − toAdd
13: else
14: level = level + 1
15: if ∃ agent with degree 1 then
16: remove the child
17: convert all leaf nodes to servers

scheduling request throughput ρsched. Thus, to show that any dMax CSD tree is an op-
timal solution among the trees in the dMax set, we must prove that the service request
throughput ρservice of any CSD tree is at least as large as the ρservice of any other tree in
the dMax set.

By Lemma 3, we know that the service request throughput ρservice increases with
the number of servers included in a deployment. Given the limited resource set size,
|V|, the number of servers (leaf nodes) is largest for deployments with the smallest
number of agents (internal nodes). Therefore, to prove the desired result we just have
to show that dMax CSD trees have the minimal number of internal nodes among the
trees in a dMax set.

Let us consider any optimal tree T in a dMax set. We have three cases to consider.
1. T is a CSD tree. As all CSD trees (in the dMax set) have the same number of

internal nodes, all CSD trees are optimal. QED.
2. T is not a CSD tree but all its internal nodes have a degree equal to dMax , except

possibly one. Then we build a CSD tree having at most as many internal nodes as T .
Using case 1, this will prove the result.

Let h be the height of T . As T is not a CSD tree, seeing our hypothesis on the degree
of its internal nodes, T must have a node at a height h′ < h − 1 which has strictly less
than dMax children. Let h′ be the smallest height at which there is such a node, let N
be such a node, and let d be the degree of N . Then remove dMax −d children from any
internal node N ′ at height h − 1 and add them as children of N . Note that, whatever
the value of d, among N and N ′ there is the same number of internal nodes whose
degree is strictly less than dMax before and after this transformation. Then, through
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this transformation, we obtained a new tree T ′ whose internal nodes all have a degree
equal to dMax , except possibly one. Also, there is the same number of leaf nodes in T
and T ′. Therefore, T ′ is also optimal. Furthermore, if T ′ is not a CSD tree, it has one
less node at level h′ whose degree is strictly less than dMax ; if there are zero nodes at
level h′ whose degree is strictly less than dMax after the transformation then the value
to “h′” is increased. Repeating this transformation recursively we will eventually end
up with a CSD tree.

3. T has at least two internal nodes whose degree is strictly less than dMax . Then,
let us take two such nodes N and N ′ of degrees d and d′. If d + d′ ≤ dMax , then we
remove all the children of N ′ and make them children of N . Otherwise, we remove
dMax − d children of N ′ and make them children of N . In either case, the number of
leaf nodes in the tree before and after the transformation is non-decreasing, and the
number of internal nodes whose degree is strictly less than dMax is (strictly) decreas-
ing. So, as for the original tree, the new tree is optimal. Repeating this transformation
recursively, we will eventually end up with a tree dealt with by case 2. Hence, we can
conclude. �

We select CSD tree because only the dMax CSD tree has minimum height among
all optimal trees in the dMax set.

Theorem 2. A complete spanning d-ary tree with degree d ∈ [1, |V| − 1] that maximizes the
minimum of the scheduling request and service request throughputs is an optimal deployment.

Proof. This theorem is fundamentally a corollary of Theorem 1. The optimal degree is
not known a priori; it suffices to test all possible degrees d ∈ [1, |V| − 1] and to select
the degree that provides the maximum completed request throughput. �

8.1.3 Deployment construction

Once an optimal degree best_d has been calculated using Theorem 2, we can use the
algorithm shown in Figure 8.1 to construct the optimal CSD tree.

A few examples will help clarify the results of our deployment planning approach.
Let us consider that we have 10 available nodes (|V| = 10). Suppose best_d = 1.
Algorithm 8.1 will construct the corresponding best platform - a root agent with a
single server attached. Now suppose best_d = 4. Then Algorithm 8.1 will construct
the corresponding best deployment - the root agent with four children, one of which
also has four children; the deployment has two agents, seven servers and one unused
node because it can only be attached as a chain.

Figure 8.3 shows some possible DIET deployments.

8.1.4 Request performance modeling

In order to apply the model defined in Section 8.1 to DIET, we must have models
for the scheduling throughput and the service throughput in DIET. In this section we
define performance models to estimate the time required for various phases of request
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MA

LA

LA

MA

LA

MA

LA

LA

Figure 8.3: Example DIET deployments consisting of MAs, LAs, and SeDs (unlabelled
circles).

treatment in DIET. These models will be used in the following section to create the
needed throughput models.

We make the following assumptions about DIET for performance modeling. The
MA and LA are considered as having the same performance because their activities
are almost identical and in practice we observe only negligible differences in their
performance.

We assume that the work required for an agent to treat responses from SeD-type
children and from agent-type children is the same. DIET allows configuration of the
number of responses forwarded by agents; here we assume that only the best server is
forwarded to the parent.

When client requests are sent to the agent hierarchy, DIET is optimized such that
large data items like matrices are not included in the problem parameter descriptions
(only their sizes are included). These large data items are included only in the final
request for computation from client to server. As stated earlier, we assume that we do
not have a priori knowledge of client locations and request submission patterns. Thus,
we assume that needed data is already in place on the servers and we do not consider
data transfer times.

The following variables will be of use in our model definitions. Sreq is the size in
Mb of the message forwarded down the agent hierarchy for a scheduling request. This
message includes only parameters and not large input data sets. Srep is the size in Mb
of the reply to a scheduling request forwarded back up the agent hierarchy. Since we
assume that only the best server response is forwarded by agents, the size of the reply
does not increase as the response moves up the tree.

Wreq is the amount of computation in MFlop needed by an agent to process one
incoming request. Wrep(d) is the amount of computation in MFlop needed by an agent
to merge the replies from its d children. Wpre is the amount of computation in MFlop
needed for a server to predict its own performance for a request. Wapp is the amount of
computation in MFlop needed by a server to complete a service request for app service.
The provision of this computation is the main goal of the DIET system.
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Agent communication model: To treat a request, an agent receives the request from
its parent, sends the request to each of its children, receives a reply from each of its
children, and sends one reply to its parent. By Lemma 2, we are concerned only with
the performance of the agent with the highest degree, d. The time in seconds required
by an agent for receiving all messages associated with a request from its parent and
children is as follows.

agent_receive_time =
Sreq + d · Srep

B
(8.1)

Similarly, the time in seconds required by an agent for sending all messages asso-
ciated with a request to its children and parent is as follows.

agent_send_time =
d · Sreq + Srep

B
(8.2)

Server communication model: Servers have only one parent and no children, so
the time in seconds required by a server for receiving messages associated with a
scheduling request is as follows.

server_receive_time =
Sreq

B
(8.3)

The time in seconds required by a server for sending messages associated with a
request to its parent is as follows.

server_send_time =
Srep

B
(8.4)

Agent computation model: Agents perform two activities involving computation:
the processing of incoming requests and the selection of the best server amongst the
replies returned from the agent’s children.

There are two activities in the treatment of replies: a fixed cost Wfix in MFlops and
a cost Wsel that is the amount of computation in MFlops needed to process the server
replies, sort them, and select the best server. Thus the computation associated with the
treatment of replies is given

Wrep(d) = Wfix + Wsel · d

The time in seconds required by the agent for the two activities is given by the
following equation.

agent_comp_time =
Wreq + Wrep(d)

w
(8.5)

Server computation model: Servers also perform two activities involving com-
putation: performance prediction as part of the scheduling phase and provision of
application services as part of the service phase.

Let us consider a deployment with a set of servers S and the activities involved in
completing |S| requests at the server level. All servers complete |S| prediction requests
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and each server will complete one service request phase, on average. As a whole, the
servers as a group require the (Wpre · |S| + Wapp)/w time in seconds to complete the S

requests. We divide by the number of requests |S| to obtain the average time required
per request by the servers as a group.

server_comp_time =
Wpre + Wapp

|S|

w
(8.6)

8.2 Steady-state throughput modeling

In this section we present models for scheduling and service throughput in DIET. We
consider two different theoretical models for the capability of a computing resource to
do computation and communication in parallel.

Send or receive or compute, single port: In this model, a computing resource has
no capability for parallelism: it can either send a message, receive a message, or com-
pute. Only a single port is assumed: messages must be sent serially and received seri-
ally. This model may be reasonable for systems with small messages as these messages
are often quite CPU intensive. As shown in the following equation, the scheduling
throughput in requests per second is then given by the minimum of the throughput
provided by the servers for prediction and by the agents for scheduling.

ρ = min
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Send || receive || compute, single port: In this model, it is assumed that a computing
resource can send messages, receive messages, and do computation in parallel. We still only
assume a single port-level: messages must be sent serially and they must be received serially.
Thus, for this model throughput can be calculated as follows.

ρ = min
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8.3 Experimental results
In this section we present experiments designed to test the ability of our deployment model
to correctly identify good real-world deployments. Since our performance model and deploy-
ment approach focus on maximizing steady-state throughput, our experiments focus on test-
ing the maximum sustained throughput provided by different deployments. The following
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section describes the experimental design, Section 8.3.2 describes how we obtained the pa-
rameters needed for the model, Section 8.3.3 presents experiments testing the accuracy of our
throughput performance models, and Section 8.3.4 presents experiments testing whether the
deployment selected by our approach provides good throughput as compared to other rea-
sonable deployments. Finally, Section 8.4 provides some forecasts of good deployments for a
range of problem sizes and resource sets.

8.3.1 Experimental design

Software: DIET 2.0 is used for all deployed agents and servers; GoDIET [88] version 2.0.0 is
used to perform the actual software deployment.

Job types: In general, at the time of deployment, one can know neither the exact job mix
nor the order in which jobs will arrive. Instead, one has to assume a particular job mix, define
a deployment, and eventually correct the deployment after launch if it wasn’t well-chosen.
For these tests, we consider the DGEMM application, a simple matrix multiplication provided
as part of the Basic Linear Algebra Subprograms (BLAS) package [32]. For example, when
we state that we use DGEMM 100, it signifies that we use matrix multiplication with square
matrices of dimensions 100x100. For each specific throughput test we use a single problem size;
since we are testing steady-state conditions, the performance obtained should be equivalent to
that one would attain for a mix of jobs with the same average execution time.

Workload: Measuring the maximum throughput of a system is non-trivial: if too little load
is introduced the maximum performance may not be achieved, if too much load is introduced
the performance may suffer as well. A unit of load is introduced via a script that runs a single
request at a time in a continual loop. We then introduce load gradually by launching one
client script every second. We introduce new clients until the throughput of the platform stops
improving; we then let the platform run with no addition of clients for 10 minutes. Results
presented are the average throughput during this 10 minute period. This test is hereafter called
a throughput test.

Resources: The experiments were performed on two similar clusters. The first is a 55-
node cluster at the École Normale Supérieure in Lyon, France. Each node includes dual AMD
Opteron 246 processors at 2 GHz, a cache size of 1024 KB, and 2 GB of memory. We used
GCC 3.3.5 for all compilations and the Linux kernel version was 2.6.8. All nodes are connected
by both a Gigabit Ethernet. We measured network bandwidth using the Network Weather
Service [85]. Using the default NWS message size of 256 kB we obtain a bandwidth of 909.5
Mb/s; using the message size sent in DIET of 850 bytes we obtain a bandwidth of 20.0 Mb/s.

The second cluster is a 140-node cluster at Sophia in France. The nodes are physically iden-
tical to the ones at Lyon but are running the Linux kernel version 2.4.21 and all compilations
were done with GCC 3.2.3. The machines at Sophia are linked by 6 different Cisco Gigabit
Ethernet switches connected with a 32 Gbps bus.

8.3.2 Model parametrization

Table 8.1 presents the parameter values we use for DIET in the models for ρsched and ρservice.
Our goal is to parametrize the model using only easy-to-collect micro-benchmarks. In partic-
ular, we seek to use only values that can be measured using a few clients executions. The al-
ternative is to base the model on actual measurements of the maximum throughput of various
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system elements; while we have these measurements for DIET, we feel that the experiments re-
quired to obtain such measurements are difficult to design and run and their use would prove
an obstruction to the application of our model for other systems.

To measure message sizes Sreq and Srep we deployed a Master Agent (MA) and a single
DGEMM server (SeD) on the Lyon cluster and then launched 100 clients serially. We collected
all network traffic between the MA and the SeD machines using tcpdump and analyzed the
traffic to measure message sizes using the Ethereal Network Protocol analyzer1. This approach
provides a measurement of the entire message size including headers. Using the same MA-
SeD deployment, 100 client repetitions, and the statistics collection functionality in DIET [24],
we then collected detailed measurements of the time required to process each message at the
MA and SeD level. The parameter Wrep depends on the number of children attached to an
agent. We measured the time required to process responses for a variety of star deployments
including an MA and different numbers of SeDs. A linear data fit provided a very accurate
model for the time required to process responses versus the degree of the agent with a corre-
lation coefficient of 0.997. We thus use this linear model for the parameter Wrep. Finally, we
measured the capacity of our test machines in MFlops using a mini-benchmark extracted from
Linpack and used this value to convert all measured times to estimates of the MFlops required.

Components Wreq Wrep Wpre Srep Sreq

(MFlop) (MFlop) (MFlop) (Mb) (Mb)
Agent 3.2 ×10−2 1.3×10−3 + 9.6×10−4·d - 6.4 ×10−3 5.3×10−3

SeD - - 6.4 ×10−3 6.4×10−5 5.3 ×10−5

Table 8.1: Parameter values for middleware deployment on cluster

8.3.3 Throughput model validation
This section presents experiments testing the accuracy of the DIET agent and server through-
put models presented in Section 8.2.

First, we examine the ability of the models to predict agent throughput and, in particular, to
predict the effect of an agent’s degree on its performance. To test agent performance, the test
scenario must be clearly agent-limited. Thus we selected a very small problem size of DGEMM
10. To test a given agent degree d, we deployed an MA and attached d SeDs to that MA; we
then ran a throughput test as described in Section 8.3.1. The results are presented in Figure 8.4.
We verify that these deployments are all agent-limited by noting that the throughput is lower
for a degree of two than for a degree of 1 despite the fact that the degree two deployment has
twice as many SeDs.

Figures 8.4 (a) and (b) present model predictions for the serial and parallel models, re-
spectively. In each case three predictions are shown using different values for the network
bandwidth. The values of 20 Mb/s and 909.5 Mb/s are the values obtained with NWS. Com-
parison of predicted and measured leads us to believe that these measurements of the network
bandwidth are not representative of what DIET actually obtains. This is not surprising given
that DIET uses very small messages and network performance for this message size is highly
sensitive to the communication layers used. The third bandwidth in each graph is chosen to

1http://www.ethereal.com
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(a) Serial model
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Figure 8.4: Measured and predicted platform throughput for DGEMM size 10; predic-
tions are shown for several bandwidths.
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provide a good fit of the measured and predicted values. For the purposes of the rest of this
paper we will use the serial model with a bandwidth of 190 Mb/s because it provides a better
fit than the parallel model. In the future we plan to investigate other measurement techniques
for bandwidth that may better represent the bandwidth achieved when sending many very
small messages as is done by DIET.
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Figure 8.5: Measured and predicted platform throughput for DGEMM size 1000; pre-
dictions are shown for the serial model with bandwidth 190 Mb/s.

Next, we test the accuracy of throughput prediction for the servers. To test server per-
formance, the test scenario must be clearly SeD-limited. Thus we selected a relatively large
problem size of DGEMM 1000. To test whether performance scales as the number of servers
increases, we deployed an MA and attached different numbers of SeDs to the MA. The results
are presented in Figure 8.5. Only the serial model with a bandwidth of 190 Mb/s is shown; in
fact, the results with the parallel model and with different bandwidths are all within 1% of this
model since the communication is overwhelmed by the solve phase itself.

8.3.4 Deployment selection validation

In this section we present experiments that test the effectiveness of our deployment approach
in selecting a good deployment. For each experiment, we select a cluster, define the total num-
ber of resources available, and define a DGEMM problem size. We then apply our deployment
algorithms to predict which CSD tree will provide the best throughput and we measure the
throughput of this CSD tree in a real-world deployment. We then identify and test a suit-
able range of other CSD trees including the star, the most popular middleware deployment
arrangement.

Figure 8.6 shows the predicted and actual throughput for a DGEMM size of 200 where 25
nodes in the Lyon cluster are available for the deployment. Our model predicts that the best
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throughput is provided by CSD trees with degrees of 12, 13 and 14. These trees have the
same predicted throughput because they have the same number of SeDs and the throughput
is limited by the SeDs. Experiments show that the CSD tree with degree 12 does indeed provide
the best throughput. The model prediction overestimates the throughput; we believe that there
is some cost associated with having multiple levels in a hierarchy that is not accounted for in
our model. However, it is more important that the model correctly predicts the shape of the
graph and identifies the best degree than that it correctly predicts absolute throughput.
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Figure 8.6: Predicted and measured throughput for different CSD trees for DGEMM 200
with 25 available nodes in the Lyon cluster.

For the next experiment, we use the same problem size of 200 but change the number of
available nodes to 45 and the cluster to Sophia. We use the same problem size to demonstrate
that the best deployment is dependent on the number of resources available, rather than just
the type of problem. The results are shown in Figure 8.7. The model predicts that the best
deployment will be a degree eight CSD tree while experiments reveal that the best degree is
three. The model does however correctly predict the shape of the curve and selects a deploy-
ment that achieves a throughput that is 87.1% of the optimal. By comparison, the popular star
deployment (degree 44) obtains only 40.0% of the optimal performance.

For the last experiment, we again use a total of 45 nodes from the Sophia cluster but we
increase the problem size to 310; we use the same resource set size to show that the best deploy-
ment is also dependent on the type of workload expected. The results are shown in Figure 8.8.
In this test case, the model predictions are generally much more accurate than in the previous
two cases; this is because ρservice is the limiting factor over a greater range of degrees due to
the larger problem size used here. Our model predicts that the best deployment is a 22 degree
CSD tree while in experimentation the best degree is 15. However, the deployment chosen
by our model achieves a throughput that is 98.5% of that achieved by the optimal 15 degree
tree. By comparison, the star and tri-ary tree deployments achieve only 73.8% and 74.0% of the
optimal throughput.
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Figure 8.7: Predicted and measured throughput for different CSD trees for DGEMM 200
with 45 available nodes in the Sophia cluster.
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Figure 8.8: Predicted and measured throughput for different CSD trees for DGEMM 310
with 45 available nodes in the Sophia cluster.
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Table 8.2 summarizes the results of these three experiments by reporting the percentage of
optimal achieved for the tree selected by our model, the star, and the tri-ary tree. The table
also includes data for problem size 10, for which an MA with one SeD is correctly predicted
to be optimal, and problem size 1000, for which a star deployment is correctly predicted to be
optimal. These last two cases represent the usage of the model in clearly SeD-limited or clearly
agent-limited conditions.

DGEMM Nodes Optimal Selected Model Star Tri-ary
Size |V| Degree Degree Performance
10 21 1 1 100.0% 22.4% 50.5%

100 25 2 2 100.0% 84.4% 84.6%
200 45 3 8 87.1% 40.0% 100.0%
310 45 15 22 98.5% 73.8% 74.0%
1000 21 20 20 100.0% 100.0% 65.3%

Table 8.2: A summary of the percentage of optimal achieved by the deployment se-
lected by our model, a star deployment, and a tri-ary tree deployment.

8.3.5 Validation of model for mix workload

In this section we test whether it is better to deploy one DIET hierarchy on all available nodes
and submit all (heterogeneous) requests to the hierarchy, or whether it is better to divide the
available nodes in different partitions with one partition per problem size. For example, if
we have 100 nodes and four different problems, should we deploy one CSD tree using all 100
nodes to solve the four types of problems, or should we deploy four CSD trees of 25 nodes
each and submit only uniform problems to each CSD tree.

For this experiment we use a total of 75 nodes at the Orsay site and DGEMM problem sizes
10, 100, and 1000. First, we divided the available nodes in three sets of 25 nodes each. Then we
used our optimal deployment planning algorithm to predict the best value of d to construct a
CSD tree with 25 nodes for each problem size. Next, we used the planning algorithm to predict
the best value of d for a CSD tree using 75 nodes and each problem size.

For a deployment of size 25 nodes, for sizes 10 and 100 our algorithm predicts a best degree
of 2, while for size 1000 the best degree is predicted to be 24. For a deployment of size 75 nodes,
degree 2 is again predicted to be optimal for sizes 10 and 100 while degree 74 is predicted to be
optimal for size 1000. Next, we tested the makespan of each set of tasks on the three separate
deployments, sending only the appropriate problem size to each deployment. Then we tested
the makespan of the combined set of tasks including all three problem sizes on the 75 node
deployments. The results are shown in Fig. 8.9.

Fig. 8.9 shows that if we deploy three small CSD tree in parallel it take 560.36 seconds to
execute 3000 requests but if we deploy one big CSD tree but with degree 74, we can save time,
as it took only 466 seconds to execute 3000 requests.
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Figure 8.9: Makespan for a group of tasks partitioned to three deployments or sent to
a single joint deployment.

8.4 Model forecasts

In the previous section we presented experiments demonstrating that our model is able to
automatically identify a deployment that is close to optimal. In this section we use our model
to forecast optimal deployments for a variety of scenarios. These forecasts can then be used
to guide future deployments at a larger scale than we were able to test in these experiments.
Table 8.3 summarizes model results for a variety of problem sizes and a variety of platform
sizes for a larger cluster with the characteristics of the Lyon cluster.

8.5 Conclusion

In this chapter we have presented an approach for determining an optimal hierarchical mid-
dleware deployment on cluster, homogeneous resources. In optimal middleware deployment
planning approach, We have shown that an optimal deployment for hierarchical middleware
systems on clusters is provided by a CSD tree. We presented request performance models
followed by throughput models for agents and servers in DIET. We presented experiments
validating the DIET throughput performance models and demonstrating that our approach
can effectively automatically build a tree for deployment which is nearly optimal and which
performs significantly better than other reasonable deployments.

Now a days the application size is getting bigger and thus execution of the applications
require high computing power and large data storage. It is not always possible to solve the ap-
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|V|
DGEMM Size 10 100 500 1000

d |A| |S| d |A| |S| d |A| |S| d |A| |S|
25 1 1 1 2 11 12 24 1 24 24 1 24
50 1 1 1 2 11 12 49 1 49 49 1 49

100 1 1 1 2 11 12 50 2 98 99 1 99
200 1 1 1 2 11 12 40 5 195 199 1 199
500 1 1 1 2 11 12 15 34 466 125 4 496

Table 8.3: Predictions for the best degree d, number of agents used |A|, and number
of servers used |S| for different DGEMM problem sizes and platform sizes |V|. The
platforms are assumed to be larger clusters with the same machine and network char-
acteristics as the Lyon cluster.

plication on one cluster, homogeneous resources. Thus, users access the distributed resources
or clusters to execute their applications in reasonable time. Middleware deployment planning
presented in this chapter is for homogeneous resources and cannot be applied to heteroge-
neous resources. However, finding the best deployment among heterogeneous resources is
a hard problem since it amounts to find the best broadcast tree on a general graph, which
is known to be NP-complete [15]. So next Chapter 9 provides an heuristic for middleware
deployment on heterogeneous resources.
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Chapter 9

Automatic Middleware Deployment
Planning for Grid

In previous chapter, we have presented an optimal middleware deployment planning for ho-
mogeneous resources. Homogeneous deployment planning cannot be applied to heteroge-
neous resources because incase of homogeneous deployment planning we didn’t apply any
logic to select parent nodes, nodes that will act as scheduler. In case of heterogeneous node we
have to calculate the number of children supported by each node, as we did in homogeneous
case and also select nodes that will act as parent nodes in the deployment so as to maximize
the throughput of the platform. However, finding the best deployment among heterogeneous
resources is a hard problem since it amounts to find the best broadcast tree on a general graph,
which is known to be NP-complete [15]. As our goal is to find a deployment on grid so in this
chapter we present an heuristic for middleware deployment on heterogeneous resources.

Our objective is to generate a best platform from the available nodes so as to fulfill client
demand if client demand is at most equal to the maximum throughput that can be achieved
by the use of available nodes in a time step. Throughput is the maximum number of requests
that can be completed (real execution is completed) in a time step.

9.1 Platform Deployment

Our target platform architecture is shown in Figure 8.1. The software system architecture and
client request execution is done in same manner as defined in Section 8.1.1. In this section we
define the resource architecture and some assumptions considered for the middleware deploy-
ment on heterogeneous resources.

Resource architecture - The target resource architectural framework is represented by a
weighted graph G = (V, E, w,B). Each vertex i in the set of vertices V represents a computing
resource with computing power wi in MFlop/second for resource i. For the heuristic we have
assumed that the bandwidth link between the nodes is homogeneous. That means, each edge
e in the set of edges E represents a resource link between resources with edge cost B measured
in Mb/second. We do not consider latency in data transfer costs because our model is based
on steady-state scheduling techniques [16]. Usually, the latency is paid once for each of the
communications that take place. In steady-state scheduling, however, as a flow of messages
takes place between two nodes, the latency is paid only one time (when the flow is initially
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established) for the whole set of messages. Therefore latency will have an insignificant impact
on our model and so we do not take it into account.

Deployment assumptions - A valid deployment consists of a mapping of a hierarchical
arrangement of agents and servers onto the set of resources V. Any server or agent in a de-
ployment must be connected to at least one other element; thus a deployment can have only
connected nodes. A valid deployment will always include at least the root-level agent and one
server. Each node v ∈ V can be assigned to either exactly one server s, exactly one agent a or
the node can be left idle. Thus if the total number of agents is |A|, the total number of servers
is |S|, and the total number of resources is |V|, then

|A| + |S| ≤ |V|.
Note that since the use of multiple agents is designed to distribute the cost of services such

as scheduling, there is no performance advantage to have an agent with a single child. Thus,
any chain can and should be reduced by moving the leaf child of the chain into the position of
the first agent in the chain. The only exception to this policy is for the root-level agent with a
single server child; this “chain” can not be reduced.

We consider that at the time of deployment we do not know the client locations or the char-
acteristics of the client resources. Thus clients are not considered in the deployment process
and, in particular, we assume that the set of resources used by clients is disjoint from V. For
the simplicity defined variables are listed in Table 9.1.

Variable Representation
V set of computing resources
i computing resoruce

wi computing power of resource i

E set of edges
e resoruce link between two resoruces
S set of servers
s server
A set of agents
a agent

Table 9.1: A summary of notations used to define platfrom deployment.

9.2 Heuristic for middleware deployment on heteroge-
neous resources

Our objective is to find a deployment that provides the maximum throughput ρ of completed requests
per second. A completed request is one that has completed both the scheduling and service re-
quest phases and for which a response has been returned to the client. When the maximum
throughput can be achieved by multiple distinct deployments, the preferred deployment is the
one using the least resources.

We define the scheduling request throughput of node i in requests per second, ρschedi
, as

the rate at which requests are processed by the scheduling phase (see Section 8.1.1). Likewise,
we define the service throughput of node i in requests per second, ρservicei

, as the rate at which
the servers produce the services required by the clients.
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Lemma 4. The completed request throughput ρ of a deployment is given by the minimum of the schedul-
ing request throughput ρschedi

among all resources i and the service request throughput ρservice of the
deployment.

ρ = min(∀vi(ρschedi
), ρservice)

From Lemma 4 it is clear that throughput of the deployment platform is dependent on
the scheduling throughput of each node and servicing throughput of the deployment. But
as scheduling throughput and servicing throughput depends on the computing power of the
node. The placement of the nodes in the hierarchy depends indirectly on the computing power
of the nodes. As explained in Section 9.1 all the resources are of different computing power.
So selection of the resources for mapping of appropriate middleware element is very crucial
for heterogeneous resources even for homogeneous resources it was not easy as shown in
experimental results in Chapter 1.

For the sake of simplicity we have defined some procedures for the middleware deploy-
ment heuristic.

• calc_sch_pow is a function to calculate the scheduling power of each node according
to the computing power of the node and number of its children.

• calc_hier_ser_pow is a function to calculate the servicing power provided by the
hierarchy when load is equally divided among the servers of the hierarchy.

• sort_nodes is a function to sort the available nodes according to there scheduling
power calculated by function calc_sch_powwith maximum number of children.

• empty_array is a function to remove all the node ids from the agent and server arrays.

• add_servers_list is a function to add id of the nodes that will be servers in the
hierarchy.

• calc_min_val is a function that calculates the minimum throughput possible among
scheduling throughput, servicing throughput of the constructing hierarchy and the client
volume.

• count_child is a function that counts the number of children that a node can support
without decreasing scheduling power below the demanded throughput, while calculat-
ing the children.

• shift_nodes is a function to shift up the node id in the server array if any server is
converted as an agent.

• plot_hierarchy is a function to fill the adjacency matrix. Adjacency matrix is filled
according to the number of children that each agent (from agent array) can support.

• write_xml is a function to generate an XML file according to the adjacency matrix, that
is given as an input to GoDIET to deploy the hierarchical platform.
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9.3 Request performance modeling

In order to apply the heuristic presented in Section 9.2 to DIET, we must have models for the
scheduling throughput and the service throughput in DIET. In this section we define perfor-
mance models to estimate the time required for various phases of request treatment in DIET.
These models will be used in the following section to create the needed throughput models.

We make the following assumptions about DIET for performance modeling. The MA and
LA are considered as having the same performance because their activities are almost identical
and in practice we observe only negligible differences in their performance.

We assume that the work required for an agent to treat responses from SeD-type children
and from agent-type children is the same. DIET allows configuration of the number of re-
sponses forwarded by agents; we have configured DIET such that only the reference of best
server is forwarded to the parent.

When client requests are sent to the agent hierarchy, DIET is optimized such that large data
items like matrices are not included in the problem parameter descriptions (only their sizes are
included). These large data items are included only in the final request for computation from
client to server. As stated earlier, we assume that we do not have a priori knowledge of client
locations and request submission patterns. Thus, we assume that needed data is already in
place on the servers and we do not consider data transfer times.

The following variables will be of use in our model definitions. Sreq is the size in Mb
of the message forwarded down the agent hierarchy for a scheduling request. This message
includes only parameters and not large input data sets. Srep is the size in Mb of the reply to a
scheduling request forwarded back up the agent hierarchy. Since we assume that only the best
server response is forwarded by agents, the size of the reply does not increase as the response
moves up the tree.

wi is the computing power in MFlop/second for resource i. Wreqi
is the amount of compu-

tation in MFlop needed by an agent i to process one incoming request. Wrepi
(di) is the amount

of computation in MFlop needed by an agent i to merge the replies from di children. Wprei
is

the amount of computation in MFlop needed for a server i to predict its own performance for
a request. Wappi

is the amount of computation in MFlop needed by a server i to complete a
service request for app service. The provision of this computation is the main goal of the DIET
system. For the simplicity defined notations are listed in Table 9.2.

Agent communication model: To treat a request, an agent receives the request from its
parent, sends the request to each of its children, receives a reply from each of its children, and
sends one reply to its parent. The time in seconds required by an agent i for receiving all
messages associated with a request from its parent and di children is as follows:

agent_receive_time =
Sreq + di · Srep

B
(9.1)

Similarly, the time in seconds required by an agent for sending all messages associated
with a request to its di children and parent is as follows:

agent_send_time =
di · Sreq + Srep

B
(9.2)

Server communication model: Servers have only one parent and no children, so the time
in seconds required by a server for receiving messages associated with a scheduling request is
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Algorithme 9.1 Heuristic: To find the best hierarchy
1: for (i=0;i<nodes;i++) do
2: child[i]=nodes;
3: sch_pow[i]=calc_sch_pow(child[i],input_values[i]);
4: sort_nodes(sch_pow, sorted_nodes);
5: vir_max_sch_pow = calc_sch_pow(1,input_values[sorted_nodes[0]]);
6: acount=0; ncount=0;scount=0;
7: agents[acount++]=sorted_nodes[ncount++];
8: servers[scount++]=sorted_nodes[ncount++];
9: d=1; nb_sed=d; node_used=nb_sed+1;

10: vir_max_sch_pow=calc_sch_pow(d,input_values[agents[0]]);
11: vir_max_ser_pow=calc_hier_ser_pow(input_values[],nb_sed,servers[]);
12: if (vir_max_sch_pow < min_ser_cv) then
13: select_d=1; nb_sed=d;nodes_hierarchy=2;
14: else
15: throughput_diff =|vir_max_sch_pow - min_ser_cv|;
16: while (diff>throughput_diff) do
17: diff=throughput_diff;
18: d++; nb_sed=d; node_used=nb_sed+1;
19: empty_arrays(agents,servers);
20: acount=0; ncount=0; scount=0; count=1;
21: agents[acount]=sorted_nodes[ncount]; ncount++; acount++;
22: vir_max_sch_pow=calc_sch_pow(d,input_values[agents[0]]);
23: add_servers_list(sorted_nodes[],servers[],d,scount);
24: vir_max_ser_pow=calc_hier_ser_pow(input_values[],nb_sed,servers[]);
25: throughput_diff=calc_min_val(vir_max_ser_pow,client_volume,vir_max_sch_pow);
26: count_child(vir_max_sch_pow,nodes,add_child[],input_values[]);
27: while ((node_used<nodes)&&(vir_max_sch_pow>vir_max_ser_pow)) do
28: child_added=0;
29: if (add_child[sorted_nodes[ncount]]>1) then
30: nb_sed—-; ncount++; agents[acount]=servers[0]; acount++;
31: scount=shift_nodes(scount,servers); scount—-;
32: servers[scount]=sorted_nodes[d+count];
33: count++; scount++; nb_sed++; node_used++; child_added++;
34: while (child_added<add_child[sorted_nodes[ncount]]) do
35: vir_max_ser_pow=calc_hier_ser_pow(input_values[],nb_sed,servers[]);
36: if ((vir_max_ser_pow<client_volume)&&(node_used<

nodes)&&(vir_max_ser_pow<vir_max_sch_pow)) then
37: servers[scount]=sorted_nodes[d+count]; scount++;
38: count++; nb_sed++; child_added++; node_used++;
39: vir_max_ser_pow=calc_hier_ser_pow(input_values[],nb_sed,servers[]);
40: else
41: child_added=add_child[sorted_nodes[ncount]];
42: else
43: node_used=nodes;
44: throughput_diff=calc_min_val(vir_max_ser_pow,client_volume,vir_max_sch_pow);
45: nodes_hierarchy=nb_sed+acount;
46: if (vir_max_sch_pow<vir_max_ser_pow) then
47: if (diff<throughput_diff) then
48: selected_d=d-1;
49: else
50: selected_d=d;
51: diff=throughput_diff;
52: if (d==nodes-1) then
53: diff=throughput_diff;
54: plot_hierarchy(hierarchy,nodes,add_child,sorted_nodes,nodes_hierarchy,selected_d);
55: write_xml(nodes_hierarchy,hierarchy,sed_binary_name,agent_binary_name,xml_file_name);
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Notation Representation
ρ throughput of the platfrom

ρschedi
scheduling request throughput of resource i

ρservice service request throughput
Sreq size of incomming request
Srep size of the reply
Wprei

amount of computation of resoruce i to merge
the replies from di children

Wseli amount of computation of resoruce i needed
to process the server reply

Wfixi
fixed cost to process the server reply

Wreqi
amount of computation need by resoruce i

to process one incoming request
Wappi

amount of computation needed by a server i

to complete a service request for app service
di children supported by resource i

B Bandwidth link between resoruces
N Number of requests completed by S in a time step
C Constant to denote time

Table 9.2: A summary of notations used to define performance model.

as follows:

server_receive_time =
Sreq

B
(9.3)

The time in seconds required by a server for sending messages associated with a request to
its parent is as follows:

server_send_time =
Srep

B
(9.4)

Agent computation model: Agents perform two activities involving computation: the pro-
cessing of incoming requests and the selection of the best server amongst the replies returned
by the agent’s children.

There are two activities in the treatment of replies: a fixed cost Wfixi
in MFlops and a cost

Wseli that is the amount of computation in MFlops needed to process the server replies, sort
them, and select the best server by agent i. Thus the computation associated with the treatment
of replies is given by

Wrepi
(di) = Wfixi

+ Wseli · di

The time in seconds required by the agent for the two activities is given by the following
equation.

agent_comp_time =
Wreqi

+ Wrepi
(di)

wi
(9.5)

Server computation model: Servers also perform two activities involving computation:
performance prediction as part of the scheduling phase and provision of application services
as part of the service phase.
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We suppose that a deployment with a set of servers S completes N requests in a given time
step. Then each server i will complete Ni requests, a fraction of N such that:

N∑

i=1

Ni = N (9.6)

On average each server i do prediction of N requests and complete Ni service request in a
time step. Lets say, the servers as a group require C seconds to complete the N requests, then

C =
Wprei

· N + Wappi
· Ni

wi
(9.7)

From Equation 9.7, we can calculate the requests completed by each server i as:

Ni =
C · wi − Wprei

· N

Wappi

(9.8)

From Equation 9.6 and Equation 9.8, we get time taken by the servers to process N requests
as

C = N ·
1 +

∑N
i=1

Wprei

Wappi
∑N

i=1
wi

Wappi

(9.9)

so, time taken by the servers to process one request is

server_comp_time =
1 +

∑N
i=1

Wprei

Wappi
∑N

i=1
wi

Wappi

(9.10)

9.4 Steady-state throughput modeling
In this section we present models for scheduling and service throughput in DIET. In this sec-
tion we presents M(r, s, w), no internal parallelism model 7.1.1 for the capability of a com-
puting resource to do computation and communication. In this model, a computing resource
has no capability for parallelism: it can either send a message, receive a message, or com-
pute. Only a single port is assumed: messages must be sent serially and received serially. This
model may be reasonable for systems with small messages as these messages are often quite
CPU intensive.

Servicing throughput of server i is:

ρservicei
=

Ni

C +
Sreq+Srep

B · N
(9.11)

So according to Equations 9.6 and 9.11, servicing throughput of platform is:

ρservice =

N∑

i=1

Ni

C +
Sreq+Srep

B · N
=

1

1+
PN

i=1

Wprei
Wappi

PN
i=1

wi
Wappi

+
Sreq+Srep

B

(9.12)

The scheduling throughput ρsched in requests per second is given by the minimum of the
throughput provided by the servers for prediction and by the agents for scheduling.
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According to Lemma 1, the completed request throughput ρ of a deployment is given by
the minimum of the scheduling request throughput ρsched and the service request throughput
ρservice, so the following equation presents the throughput of the platform,

ρ = min




1

Wprei

wi
+

Sreq

B +
Srep

B

,
1

Wreqi
+Wrepi

(di)

wi
+

Sreq+di·Srep

B +
di·Sreq+Srep

B

,

1

Sreq

B +
Srep

B +
1+

PN
i=1

Wprei
Wappi

PN
i=1

wi
Wappi









∀vi (9.13)

9.5 Experimental Results
In this section we present experiments designed to test the ability of our deployment model
to correctly identify good real-world deployments. Since our performance model and deploy-
ment approach focus on maximizing steady-state throughput, our experiments focus on test-
ing the maximum sustained throughput provided by different deployments.

9.5.1 Experimental Design
Software: DIET 2.0 is used for all deployed agents and servers; GoDIET [88] version 2.1.0

is used to perform the actual software deployment.
Job types: In general, at the time of deployment, one can know neither the exact job mix

nor the order in which jobs will arrive. Instead, one has to assume a particular job mix, define
a deployment, and eventually correct the deployment after launch if it wasn’t well-chosen.
For these tests, we consider the DGEMM application, a simple matrix multiplication provided
as part of the Basic Linear Algebra Subprograms (BLAS) package [32]. For example, when
we state that we use DGEMM 100, it signifies that we use matrix multiplication with square
matrices of dimensions 100x100. For each specific throughput test we use a single problem size;
since we are testing steady-state conditions, the performance obtained should be equivalent to
that one would attain for a mix of jobs with the same average execution time.

Workload: Measuring the maximum throughput of a system is non-trivial: if too little load
is introduced the maximum performance may not be achieved, if too much load is introduced
the performance may suffer as well. A unit of load is introduced via a script that runs a single
request at a time in a continual loop. We then introduce load gradually by launching one
client script every second. We introduce new clients until the throughput of the platform stops
improving; we then let the platform run with no addition of clients for 10 minutes. Figure 9.1
shows the manner in which requests are submitted to the deployment by the clients launched
on machines.

9.5.2 Model Parametrization
Table 9.3 presents the parameter values we use for DIET in the model. Our goal is to parametrize
the model using only easy-to-collect micro-benchmarks. In particular, we seek to use only val-
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Figure 9.1: Explanation of workload introduced by submitting requests with the in-
crease in the launch of clients on each machine.

ues that can be measured using a few clients executions. The alternative is to base the model
on actual measurements of the maximum throughput of various system elements; while we
have these measurements for DIET, we feel that the experiments required to obtain such mea-
surements are difficult to design and run and their use would prove an obstruction to the
application of our model for other systems.

To measure message sizes Sreq and Srep we deployed a Master Agent (MA) and a single
DGEMM server (SeD) on the Lyon cluster and then launched 100 clients serially from Lyon clus-
ter. We collected all network traffic between the MA and the SeD machines using tcpdump and
analyzed the traffic to measure message sizes using the Ethereal Network Protocol analyzer1.
This approach provides a measurement of the entire message size including headers. Using
the same MA-SeD deployment, 100 client repetitions, and the statistics collection function-
ality in DIET, we then collected detailed measurements of the time required to process each
message at the MA and SeD level. The parameter Wrep depends on the number of children
attached to an agent. We measured the time required to process responses for a variety of star
deployments including an MA and different numbers of SeDs. A linear data fit provided a
very accurate model for the time required to process responses versus the degree of the agent
with a correlation coefficient of 0.97. We thus use this linear model for the parameter Wrep.
Finally, we measured the capacity of our test machines in MFlops using a mini-benchmark
extracted from Linpack and used this value to convert all measured times to estimates of the
MFlops required.

DIET Wreq Wrep Wpre Srep Sreq

elements (MFlop) (MFlop) (MFlop) (Mb) (Mb)
Agent 1.7 ×10−1 4.0×10−3 + 5.4×10−3·d - 5.4 ×10−3 5.3×10−3

SeD - - 6.4 ×10−3 6.4×10−5 5.3 ×10−5

Table 9.3: Parameter values for middleware deployment on Lyon site of Grid’5000

1http://www.ethereal.com



130 CHAPTER 9. AUTOMATIC MIDDLEWARE DEPLOYMENT PLANNING FOR GRID

9.5.3 Performance model validation on homogeneous platform

The usefulness of our deployment heuristic depends heavily on the performance model of
the middleware. This section presents experiments designed to show the correctness of the
performance model presented in previous section. These experiments are performed on Lyon
site.
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Figure 9.2: Star hierarchies with one or two servers for DGEMM 10x10 requests. (a)
Measured throughput for different load levels. (b) Comparison of predicted and mea-
sured maximum throughput

Experimental results shown in Figure 9.2 uses a workload of DGEMM 10x10 to compare the
performance of two hierarchies: an agent with one server versus an agent with two servers.
The model correctly predicts that both deployments are limited by agent performance and
that the addition of the second server will in fact hurt performance. Important is the correct
prediction by our model to judge the effect of adding servers than to correctly predict the
throughput of the platform.

Experimental results shown in Figure 9.3, uses a workload of DGEMM 200x200 to compare
the performance of the same one and two server hierarchies. For this scenario, the model
predicts that both hierarchies are limited by server performance and therefore, performance
will roughly double with the addition of the second server. The model correctly predicts that
the two-server deployment will be the better choice.

In summary, our deployment performance model is able to accurately predict the impact
of adding servers to a server-limited or agent-limited deployment.

To verify our heuristic we compared the predicted deployment given by the heuristic with
the experimental results presented in Chapter 8. Table 9.4 presents the comparison by report-
ing the percentage of optimal achieved by the deployments selected by different means.
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Figure 9.3: Star hierarchies with one or two servers for DGEMM 200x200 requests. (a)
Measured throughput for different load levels. (b) Comparison of predicted and mea-
sured maximum throughput

DGEMM Nodes Optimal Homogeneous Heuristic Heuristic
Size |V| Degree Degree Degree Performance
10 21 1 1 1 100.0%

100 25 2 2 2 100.0%
200 45 3 9 10 -
310 45 15 22 33 89.0%

1000 21 20 20 20 100.0%

Table 9.4: A summary of the percentage of optimal achieved by the deployment se-
lected by our heterogeneous heuristic, optimal degree, and optimal homogeneous
model.
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9.5.4 Heuristic Validation on heterogeneous cluster
To validate our heuristic we did experiments using two sites, Lyon and Orsay of Grid’5000,
a set of distributed computational resources in France. We used 200 nodes of Orsay for the
deployment of middleware elements and 30 nodes of Lyon for submitting the requests to the
deployed platform.
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Figure 9.4: Comparison of automatically-generated hierarchy for DGEMM 310*310 with
intuitive alternative hierarchies.

To convert the homogeneous cluster into heterogeneous cluster we changed the workload
of the reserved nodes by launching different size of matrix multiplication as the background
program on some of the nodes. Different size of matrix utilized the computing power in vary-
ing manner thus the available computing power of the nodes varies. We used the measured
times of Lyon nodes ( Section 9.5.2) for Orsay nodes because the machine configuration of two
sites is exactly the same. After launching the matrix program in background on machines we
used Linpack mini-benchmark to measure the capacity of the nodes in MFlops and used this
value to convert all measured times of Lyon nodes to estimates of the MFlops of each node.

We compared two different deployments with the automatically generated deployment by
our heuristic. First deployment is the simple star type, where one node act as agent and all rest
nodes are directly connected to the agent node and act as servers. In second deployment we
deployed a balanced graph, one top agent connected to 14 agents and each agent connected to
14 servers except one that could had only 3 servers.

Clients submitted DGEMM problems of two different sizes. First we tested the deployments
with DGEMM 310*310. Heuristic generated deployment used only 156 nodes and deployment
is organized as: top agent connected with 9 agents and each agent again connected to 9 agents.
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Figure 9.5: Comparison of automatically-generated hierarchy for DGEMM 1000* 1000
with intuitive alternative hierarchy.

Two agents are connected with 9 SeDs, 6 agents are connected with 7 SeDs and one with 5 SeDs.
Automatically generated deployment performed better than the two comparing deployments.
Results of the experimental results are shown in Figure 9.4.

Second experiment is done with DGEMM1000*1000. Heuristic generated a star deployment
for this problem size. Results in Figure 9.5 shows that star performed better than the second
compared deployment.

9.6 Conclusion
We present a deployment heuristic that predicts the maximum throughput that can be achieved
by the use of available nodes. Heuristic predicts good deployment for both homogeneous ad
heterogeneous resources. Comparison is done to test the heuristic for homogeneous resources
and heuristic performed up to 90% as compared to the homogeneous optimal algorithm pre-
sented in Chapter 8. To validate the heuristic experiments are done on site of Grid’5000. Exper-
iments have shown that automatically generated deployment by the heuristic performs better
than some intuitive deployments.
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Chapter 10

Improve Throughput of a Deployed
Hierarchical NES

It is not always evident to deploy the middleware platform from scratch according to the spec-
ifications of new jobs. Sometime it is useful to modify the existing hierarchy with less cost and
time then to deploy a new platform according to new requests. This chapter presents a model
to analyze existing hierarchical deployments. An mathematical model is used to analyze ex-
isting hierarchical deployment. It identify a bottleneck node, and remove the bottleneck by
adding resources in the appropriate area of the hierarchy. The solution is iterative and heuris-
tic in nature. We validated our model by applying it to improve an user defined deployment
platform’s for DIET middleware.

10.1 Hierarchical deployment model

We model a collection of heterogeneous resources (a processor, a cluster, etc.) and the com-
munication links between them as nodes and edges of an undirected hierarchical graph (tree-
shaped). Each node is a computing resource capable of computing and communicating with its
neighbors at same/different rates. We assume that one specific node, referred as client, initially
generates requests. The client sends the requests to its neighbor node, which is the head of the
hierarchy. This node check whether the request is right (means having all the parameters that
a request should have), and if so, then the request is flooded to the neighboring nodes down
in the hierarchy. These nodes forward the requests down the hierarchy till request reaches to
the connected servers. These servers send reply packets to their parent nodes. These packets
contain the status (memory available, number of resources available, performance prediction,
...) of the server. Parent node compares the reply packet sent to it, by each of its connected
server and selects the best server among them. Now the reply packet of the selected server
is sent by the node to its parent. Finally the reply packet is received by the head node. Best
server (or list of available servers, ranked in order of availability) among the selected servers
is being informed by the head node to the client. The client contacts the selected server. Then
client sends the input data to the server. Finally the server executes the function on behalf of
the client and returns the results.

The target architectural framework is represented by a weighted graph G = (V,E,w,B).
Each Pi ∈ V represents a computing resource of computing power wi, meaning that node Pi

135
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Figure 10.1: Architectural model.

execute wi MFlop/second (so bigger the wi, the faster the computing resource Pi). There is
a client node, i.e. a node Pc, which generates the requests that are passed to the following
nodes1. Each link Pi → Pj is labelled by the bandwidth value Bi,j which represents the size of
data sent per second between Pi and Pj . Measuring unit of bandwidth of link is Mb/second.

The size of the request generated by the client is S
(in)
i and the size of the request’s reply

created by each node is S
(out)
i . The measuring unit of these quantities is thus in Mb/request.

The amount of computation needed by Pi to process one incoming request is denoted by W
(in)
i

and the amount of computation needed by Pi to merge the reply requests of its children is de-
noted by W

(out)
i . We denote by W

(DGEMM)
i the amount of computation needed by Pi to process

a generic problem (for example, BLAS [32] matrix multiplication called DGEMM).
The current architectural model does not consider data management, we focus on data

in place applications (due to security problem, or parameter programming). Nevertheless,
data management could be easily added like a new level of the modeling. The application
target and the missing evaluate tools to estimate the data movement explain why we does not
consider this aspect. In the same paradigm we consider the result that are very small can be
neglected.

10.2 Throughput calculation of an hierarchical NES

Our objective is to compare the maximum number of requests answered per second by a spe-
cific type of architecture so that best architecture can be selected. α

(in)
i denotes the number

of incoming request (request coming from client) processed by Pi during one time-unit. Note
that this number is not necessarily an integer and may be a rational. In a similar way, α

(out)
i

is the number of outgoing requests (selection of the best server based on the reply packets)

1We use only one Client node for sake of simplicity but modeling many different clients with differ-
ent problem types can be done easily.
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computed during one time-unit by the node Pi. Servers are connected to the local agents at the
last level of the graph. Therefore, α

(DGEMM)
i denote the number of problem solved by the node

Pi if Pi is a server.

10.2.1 Find a bottleneck
Number of requests replied in a time step depend on bandwidth of the link, size of the request,
fraction of request being computed by a processor in a time step and the computing power of
the processor. Therefore, we have the following constraints:

Computation constraint for agent: ∀Pi :
α

(in)
i ×W

(in)
i + α

(out)
i × W

(out)
i

wi
≤ 1

Note that, it is necessary for each incoming request, that there should be a corresponding
reply, and that each request is broadcasted along the whole hierarchy. Thus, there is no
need to make a distinction between the α

(in)
i and the α

(out)
i , that all are equal to the

maximum throughput of the platform ρ. The previous equation can thus be simplified
in the following equation:

∀Pi : ρ ×
W

(in)
i + W

(out)
i

wi
≤ 1 (10.1)

Communication constraint for agent: ρ request for computations and ρ replies to these re-
quests are transmitted per time-unit along each link Pi → Pj . Therefore, we have:

∀Pi → Pj : ρ ×
S

(in)
i + S

(out)
j

Bi,j
≤ 1 (10.2)

Server’s computation constraint: Each server Pi process α
(DGEMM)
i problem per time-unit. There-

fore, we have

∀Pi s.a Pi is a server :
α

(DGEMM)
i ×W

(DGEMM)
i

wi
≤ 1

All these values are linked to ρ by the equation ρ =
∑

Pi s.a Pi is a server

α
(DGEMM)
i . Therefore,

we have
ρ ≤

∑

Pi s.a Pi is a server

wi

W
(DGEMM)
i

(10.3)

No internal parallelism: In this model, the computation and other operation performed by
the node is done sequentially, so the summation of all operations performed by an agent
should be less than the time step. Therefore, for all Pi, we have:

ρ




S

(in)
parent(i)

Bparent(i),i
+

S
(out)
i

Bparent(i),i





︸ ︷︷ ︸

Communications with the parent

+ ρ




∑

Pi→Pj

S
(in)
i + S

(out)
j

Bi,j





︸ ︷︷ ︸

Communications with the slaves

+ ρ

(

W
(in)
i + W

(out)
i

wi

)

︸ ︷︷ ︸

Local computations

≤ 1.

(10.4)
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It is noteworthy that if on Pi, computations can be performed in parallel with communi-
cations, the previous constraints should be changed as:

ρ




S

(in)
parent(i)

Bparent(i),i
+

S
(out)
i

Bparent(i),i





︸ ︷︷ ︸

Communications with the parent

+ ρ




∑

Pi→Pj

S
(in)
i + S

(out)
j

Bi,j





︸ ︷︷ ︸

Communications with the slaves

≤ 1. (10.5)

Theorem 3. The maximum number of requests that can be processed by the platform in steady state
is obtained from constraints (10.1), (10.2), (10.3), (10.4) and (10.5) and is represented by the following
formula:

ρ = min






wi

W
(in)
i + W

(out)
i

,
Bi,j

S
(in)
i + S

(out)
j

,
∑

Pi s.a Pi is a server

wi

W
(DGEMM)
i

,

1

S
(in)
parent(i)

Bparent(i),i
+

S
(out)
i

Bparent(i),i
+
∑

Pi→Pj

S
(in)
i +S

(out)
j

Bi,j
+

W
(in)
i +W

(out)
i

wi






(10.6)

Theorem 4. When maximizing the throughput, at least one of the constraints (10.1), (10.2), (10.3),
(10.4) and (10.5) is tight. This constraint represent the bottleneck of the platform.

10.2.2 Remove the bottleneck

Even when neglecting the servers constraints, finding the best topology is a hard problem
since it amounts to find the best broadcast tree on a general graph, which is known to be NP-
complete [15]. Note that even when neglecting the request mechanism, as soon as you take in
account the communications of the problem’s data, the problem of finding the best deployment
becomes NP-complete too [13].

Even in real life, the topology of the underlying platform is particular and enforce some
parts of the deployment. Therefore, we propose to improve the throughput of a given deploy-
ment by breaking its bottleneck. Using the previous theorems, we can find the bottlenecks and
get rid of them by adding a supporter agent to the parent of a loaded agent so as to divide the
load of that particular agent. We add new node according to the greedy Algorithm 10.1.

Algorithme 10.1 Algorithm to add LA.
1: while (number of available nodes > 0) do
2: Calculate the throughput ρ of structure.
3: Find a node whose constraint is tight and that can be split
4: if no such node exist then
5: The deployment cannot be improved. Exit
6: Split the load by adding new node to its parent
7: Decrease the number of available nodes
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In Algorithm 10.1, line 3 checks whether it is possible to divide the load of a node or not.
There may be many reasons for this condition to be false, for example, a node Pi having only
one child cannot divide its load.

10.3 Parameter measurement
We used Distributed Interactive Engineering Toolbox (DIET) [24] to estimate the values of the
different parameters. Name of DIET’s elements Master Agent (MA), Local Agent (LA), and
servers (SeDs) will be referred in the explanation of the experiments. Experiments are done on
a homogeneous cluster, composed of 16 processors (bi-PIII 1.4Ghz). To observe the effect on
the computation time of each component, to process one request, we did different experiments
by varying the number of LAs and SeDs with one MA and one client. We focus on linear
approximation, as this approximation gives good result for our modeling.

The effect of adding LAs is shown in Figure 10.2, in the form of time taken to execute one
request by each component. The time taken to compute a request by MA, increases with the
addition of the LAs. MA take approximately 0.01 seconds for an incoming request and the time
to compute an outgoing request is very very small, varies between 0.0001 to 0.00018 seconds.
To compute an incoming and outgoing request by an LA is approximately between 0.0066 to
0.0076 and 0.0001125 to 0.000116 seconds respectively. The time taken by SeD for computation
is very less effected by the increase in LAs.

In Figure 10.3, we have shown the effect of number of servers on the components comput-
ing capacity. For an incoming and outgoing request, computation time taken by MA, LA and
SeD increases linearly. For incoming request MA and LA take approximately 0.009 to 0.01 and
0.008 to 0.022 seconds respectively. In case of outgoing request variation is very small for MA
it is between 0.0001 to 0.0002 seconds and for LA 0.0002 to 0.00035 seconds. SeD computation
time ranges between 0.00018 to 0.00019 seconds.

The time needed by each component to reply is so small that, to estimate which fraction
should be incurred to computations and which fraction should be incurred to communications
is very difficult. Therefore, we have considered it to be only computations (and therefore S

(out)
i

=0) as a very small amount of data is exchanged here.
From these experimental results, it is observed that increasing the number of LAs accord-

ingly increases the overall time needed to process one request on a MA or a LA, the fraction of
time spent incurred to computations is almost constant. The behavior is similar when varying
the number of SeDs.

From these measurements, we estimated the time taken by the components to communi-
cate and compute the request. S

(in)
i is then calculated by summing the communication time

taken by each component and dividing it by the bandwidth of the local link. Similarly, the
value of W

(in)
i and W

(out)
i is calculated by dividing the computation time of incoming request

and the outgoing request by the processing power. Parameter values are summarized in the
Table 10.1.

10.4 Simulation results
To validate our model, we considered a real heterogeneous network that we consider is al-
ready deployed according to the DIET middleware elements. We did simulation using a sim-
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Figure 10.2: Performance calculation by adding LAs.
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Figure 10.3: Performance calculation by adding SeDs.
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Components S
(in)
i W

(in)
i W

(out)
i

Client 0.339 0.014 0
MA 0.010 0.159 0.78 e-3
LA 0.012 0.079 0.19 e-3

Table 10.1: Parameter values to calculate the throughput of a deployment.

ple modeling of a real heterogeneous network shown in Figure 10.4. Diagrammatic view of
heterogeneous network as DIET deployed platform is shown in Figure 10.5.

10.4.1 Test-bed

Distributed networks are all heterogeneous, i.e., every node has its own computing power
(may be different from other nodes) and bandwidth link between two nodes are also mostly
different. In the heterogeneous network, we have one client (veloce) and one MA at Roc-
quencourt. This MA is connected to two LAs: one at Rennes and another at Grenoble. 40 servers
(paraski cluster) are connected to LA at Rennes. LA at Grenoble is connected with two LAs,
LA at Grenoble has 200 servers (icluster cluster) and LA at Sophia has 14 servers (galere
cluster). The power of the different nodes and the bandwidth of the different link between the
nodes are depicted on Figure 10.5.

Figure 10.4: High speed network
(2.5Gb/s) between INRIA research
centers and several other research in-
stitutes.
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Figure 10.5: Diagrammatic view of
testbed.

On this heterogeneous platform, the wi’s range from 15.6 MFlop/s to 292 MFlop/s and the
bandwidth Bi,j range from 10Mb/s to 2.5Gb/s.
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10.4.2 Computing a good deployment

Real heterogeneous network (shown in Figure 10.5) have one client node, one MA, four LAs
and 255 servers. Client sends request to the deployed platform through MA. 255 servers are
used to do the real execution of the request using Equation 10.3, means tasks execution is bal-
anced among all servers of the platform. The overall throughput of heterogeneous network is
calculated by using the formula mentioned in section 10.2.1. The performance of the original
deployment (the natural one which is depicted in Figure 10.5) is rather low since it enable to
process at most only 4 request per second. But the throughput of the network can be improved
by breaking the bottleneck. To improve the throughput of the network, we used the Algo-
rithm 10.1. Requirement of nodes to break the bottleneck is fulfilled by either of two ways.
By considering that we have enough available extra nodes that we can use to improve the
throughput of the hierarchy. Or by using servers as required nodes to improve the throughput
of the hierarchy. Adding new nodes to remove the bottleneck is not very feasible as its not al-
ways possible that extra nodes are available to improve the throughput of deployed platform.
But it is advantages to use new nodes then replacing servers because by replacing the servers
as agents, we limit (decrease) the overall performance of servers and thus the throughput of
the platform.

10.4.2.1 Addition of new nodes

Bottleneck of the deployed platform shown in Figure 10.5, is located at icluster (see Fig-
ure 10.6). icluster has 200 servers so, broadcasting all the request and gathering the answer
is very time-consuming. Seven more nodes have to be added, so that it will not be the bot-
tleneck of the platform anymore. The eighth node has to be added at the Rennes’s cluster.
The gateway is very slow and, even if the number of servers is not as important as on the
icluster, it has become an issue. Nine more nodes are then added on the icluster and
then two again on Rennes. At this point, we have added total of 18 nodes and the tight equa-
tion is Equation (10.3), which means that all servers are working at full speed and that there
is no hope of improving the throughput of the platform anymore. Platform with 260 nodes
were giving throughput of 4 requests/second, which is improved to 35 requests/second buy
adding only 18 nodes.

10.4.2.2 Rearrangement of platform nodes

As stated earlier, first bottleneck of the deployed platform shown in Figure 10.5, is located at
icluster (see Figure 10.6). From 200 servers, seven servers are converted as LAs to share
the load of the LA at icluster, so that it will not be the bottleneck of the platform anymore.
Next bottleneck occurred at Rennes’s cluster, as the number of servers (40) at Rennes’s cluster
is more than then number of servers attached to other LAs in the platform. So server at the
Rennes’s cluster is added as eighth LA to share the load of parent LA and remove the bottle-
neck from Rennes’s cluster. Nine more servers are converted as LAs at icluster and then
one server is converted to LA at Rennes. At this point, total 17 servers are converted to LAs
and the tight equation is Equation (10.3). The throughput of deployed platform with 260 nodes
is improved from 4requests/second to 33 requests by rearranging the nodes.
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10.5 Conclusion
An efficient deployment for NES environment is very important. We have used theoretical
steady-state scheduling framework to propose a new model that enables to find bottlenecks
in the organization of a hierarchical NES such as the DIET middleware. This model enables
to improve the overall performance of NES by breaking bottlenecks and therefore to perform
automatic deployment or redeployment. This model can analyze the effects on performance if
different changes are done in the hierarchy’s configuration such as number of agents or servers
in the hierarchy, problem size, bandwidth, nodes’ computing power, parameter values etc.

In Chapters 7, 8, 9, 10, we have presented deployment planning for middleware on dis-
tributed resources and technique to improve the existing deployment. Using these deployment
planning techniques and launching tool an automatic middleware deployment can be devel-
oped. In next Chapter 11, we presents initial steps of an Automatic Deployment Planning Tool
(ADePT).
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Chapter 11

Automatic Deployment Planning Tool

In previous Chapters 8, 9, 10, we have presented theoretical concepts to generate best deploy-
ment plan for a middleware. To present our work in a simple form as a tool for end users,
in this chapter we present the initial steps to build a tool for automatic deployment planning
based on our theoretical concepts.

11.1 Introduction

For simplicity in this chapter we named the deployment planning tool for which initial build-
ing steps will be described, as Automatic Deployment Planning Tool (ADePT). ADePT is a
deployment planning tool that generates the deployment plan based on resource description,
application description, and middleware description (in the form of performance model). Fig-
ure 11.1 gives an outline of ADePT working, its input and output. ADePT provides an optimal
solution for hierarchical middleware environments on cluster and implement heuristics for hi-
erarchical middleware deployment on grid. ADePT can also determine the bottleneck in the
deployed hierarchy and thus helps to know whether the performance of a given deployment
can be improved or not.

Resource description provides the information like computing power, storage capacity,
etc. about the resources. Resource information can be provided as an XML file to the ADePT.
Resource description should define all compute hosts (resources) that a user wants to use.
Example of a resource description XML file is shown in Figure 11.2. “Scratch” tag specify a
local pathname that deployment tool can use as scratch space (e.g., temp storage of config files).
User must have write access to the mentioned directory. “Storage” tag define all storage space
that will be needed to run the application. “Bandwidth_link” tag mention the link between two
resources. We have considered that link between resources is homogeneous so only one tag
is enough. But as the improvement will be done in the ADePT, the bandwidth links between
resources can also be submitted as a separate XML file. If resources are homogeneous then only
“cluster” tag is enough to simplify the description of large numbers of resources. To define all
heterogeneous resources, “compute” tags should be used for individual resources. XML file
must include at least one “scratch" tag, one “storage" tag, one “bandwidth_link” tag and one
“compute" or one “cluster" tag.

Application description provides the information about the application that will be sub-
mitted to the deployed plan, like size of the scheduling request, size of the response request,
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amount of computation need for the prediction, execution etc. of the application on the dedi-
cated resource. An example of application description XML file is shown in Figure 11.3.

Deployed plan is the deployed hierarchy of a NES’s environment whose performance has
to be improved. For an example, the “diet_hierarchy” tag of Figure 6.2, is the deployed plan
for a hierarchical middleware DIET. This tag as an XML file should be submitted to ADePT if
the DIET hierarchy has to be improved. Generated output by the ADePT is also similar to this
XML file.

Performance model is a method to define the functionality of each NES’s component ac-
cording to the NES’s working phases. Performance model defines the method to calculate
the throughput of each component. Formulation of performance model according to the NES
environment is explained in detail in Section 11.2.

Techniques that ADePT use to select the deployment plan is based on the theoretical results
presented in Chapters 8, 9, and 10. Theoretical results of Chapter 8 has shown that a complete
d-ary spanning tree provides an optimal deployment for hierarchical middleware environ-
ments on homogeneous clusters. Chapter 9 has presented an heuristic to deploy hierarchical
middleware on grid, by selecting efficient resources from grid according to the functional re-
quirements of the middleware elements. A mathematics model is presented in Chapter 10
that can analyze the deployed platform and find a bottleneck node. Using Algorithm 10.1 the
bottleneck can be removed by dividing the load of the node, which is the cause of bottleneck.
Load of loaded node is divided by adding a node to its parent and divide the number of its
children nodes among the loaded node and newly added node.

11.2 Formulation of performance model for a middle-
ware

ADePT takes performance model of a middleware as an input. Performance models are based
on middleware description (functionality of middleware’s components in the form of mid-
dleware working phases, operating model 7.1.1 etc). In this section an idea is given for the
generation of the performance model for a middleware.

Description of working phases of the middleware

Generally NES environments processes requests in two phases. First user submit an applica-
tion, called scheduling request to root node. Root node is the entrance node of the deployment,
to which all users submit their application. Root node checks the scheduling request and for-
wards it down in the hierarchy. Other parent node in the hierarchy perform the same operation
until the scheduling request reaches the servers. We assume that the scheduling request is for-
warded to all servers, though this is a worst case scenario as filtering may be done by the
parents based on scheduling request type. Servers may or may not make predictions about
performance for satisfying the request, depending on the exact system.

Servers that can perform the service then generate a scheduling response. The scheduling re-
sponse is forwarded back up the hierarchy and the parents sort and select amongst the various
scheduling responses. Finally, the root node forwards the chosen scheduling response (i.e., the
selected server) to the user.
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Figure 11.1: Working of Automatic Deployment Planning Tool (ADePT).

User then generates a service request which is very similar to the scheduling request but
includes the full input data set, if any is needed. The service request is submitted by the user
to the chosen server. The server performs the requested service and generates a service response,
which is then sent back to the user.

Description of performance model

Depending upon the middleware’s working phases, the performance models can be defined.
We define performance models to estimate the time required for the treatment of requests in
various phases by each component of the middleware. According to the middleware’s compo-
nent functionality, performance model can be calculated depending upon the different work-
ing phases in which a middleware component has taken part. Below a general idea to generate
the performance model for each middleware component is given.

Parent node’s communication model: To treat a request, a node receives the request from its
parent, sends the request to each of its children, receives a reply from each of its children,
and sends one reply to its parent. Thus, time required by a parent node is associated with
the size of requests and responses received from its parent and children , bandwidth link
and number of children.
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<?xml version=" 1 . 0 " standalone="no" ?>
< !DOCTYPE resource_descr ipt ion SYSTEM " . . / resource_descr ipt . dtd ">
<resource_descr ipt ion>

< s c r a t c h dir=" / homePath / user / s c r a t c h _ d i r e c t " / >
<storage label=" g5kBordeauxDisk ">

<s c r a t c h dir=" / homePath/ user / scratch_runtime" / >
<scp server=" f r o n t a l e . bordeaux . grid5000 . f r " login="pkchouhan" / >

< / s torage>
.
.
<s torage label=" g5kOrsayDisk">

<s c r a t c h dir=" / homePath/ user / scratch_runtime" / >
<scp server=" f r o n t a l e . orsay . grid5000 . f r " login=" pkchouhan" / >

< / s torage>
<bandwidth_link B=" 190 " / >
<compute label=" node1 " disk=" disk1 ">

<ssh server=" node1 . s i t e . f r " login="pkchouhan" / >
<env path=" / homePath / user /demo / bin " LD_LIBRARY_PATH=" / homePath / user /

demo / l i b " / >
< / compute>

.

.

.

.

< c l u s t e r label=" g5kBordo " disk=" g5kBordeauxDisk " login=" pkchouhan"
total_nodes=" 50 ">

<env path=" / homePath / user /demo / bin " LD_LIBRARY_PATH=" / homePath/ user /
demo / l i b " / >

<node label="node−1.bordeaux . grid5000 . f r ">
<ssh server="node−1.bordeaux . grid5000 . f r " / >
< / node>

.

.
<node label="node−47.bordeaux . grid5000 . f r ">

<ssh server="node−47.bordeaux . grid5000 . f r " / >
< / node>

< / c l u s t e r>
.
.

< c l u s t e r label=" g5kOrsay" . . >
.
.

< / c l u s t e r>

< / resource_descr ipt ion>

Figure 11.2: An example of resource description XML file.
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<?xml version=" 1 . 0 " standalone="no" ?>
< !DOCTYPE app_description SYSTEM " . . / a p p l i c a t i on _desc r ipt . dtd ">
<app_description>

<compute label=" node1 " disk=" disk1 " login="pkchouhan">
<wapp=" 0 .0046 " / >
<wreq=" 0 .0064 " / >
<wfix=" 0 .001 " / >
<wsel=" 0 .0009 " / >
< sres =" 0 .0064 " / >
<srep=" 0 .0053 " / >

< / compute>
<compute label=" node2 " disk=" disk2 " login="pkchouhan">

<wapp=" 0 .0044 " / >
<wreq=" 0 .0054 " / >
<wfix=" 0 .0009 " / >
<wsel=" 0 .0008 " / >
< sres =" 0 .0064 " / >
<srep=" 0 .0053 " / >

< / compute>
.
.

<compute label="nodeX" . . >
.
.

< / compute>
< c l u s t e r label=" g5kBordo " disk=" g5kBordeauxDisk " login=" pkchouhan"

total_nodes=" 50 ">
<wapp=" 0 .0046 " / >
<wreq=" 0 .0064 " / >
<wfix=" 0 .001 " / >
<wsel=" 0 .0009 " / >
< sres =" 0 .0064 " / >
<srep=" 0 .0053 " / >

< / c l u s t e r>
.
.

< c l u s t e r label=" g5kOrsay" . . >
.
.

< / c l u s t e r>
< / app_description>

Figure 11.3: An example of application description XML file.
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Server node communication model: Servers have only one parent and no children, so the
time required by a server for receiving request and sending replies is associated with the
size of request and/or response and bandwidth link.

Parent node’s computation model: As parent node perform two activities involving computa-
tion: the processing of scheduling requests and the selection of the best server amongst
the replies returned from its children. So parent computation model is based on the
amount of computation need for these two activities, parent’s computing power and
number of its children.

Server node’s computation model: Servers also perform two activities involving computa-
tion: performance prediction as part of the scheduling phase and provision of applica-
tion services as part of the service phase. So server computation model depends on the
amount of computation needed for these two activities and server’s computing power.

As an example, the performance models for DIET can be seen in Part III. Using the perfor-
mance model, the throughput of any system can be calculated with different operating models
(mentioned in 7.1.1).

11.3 Working of ADePT
To generate a deployment plan for a middleware deployment, ADePT needs performance
models 11.2 for middleware’s components, application description (what is the execution time
of the application on dedicated servers, application parameters, etc.) and resource description
(computing power, bandwidth link between nodes, etc.) as input. First, throughput of each
resource is calculated according to the given performance model and then exact number of
resources are selected, that are needed to generate the deployment. Based on the type of re-
sources the arrangement of resources is defined. Then ADePT generates an XML file describing
the middleware deployment plan.

To improve a given deployment for a middleware, ADePT needs performance model for
middleware components, and an XML file representing of the deployment plan. First, through-
put of each resource is calculated and then the load of resource with minimum throughput
is shared either by adding a new resource in hierarchy or by rearranging the hierarchies re-
sources. The process of removing the bottleneck is repeated till all the servers in the hierarchy
will perform at their full speed. Then the corresponding hierarchy is translated as an XML file.

Generated XML file is submitted to the deployment tool to deploy the middleware. De-
ployment tool deploys the hierarchy according to the deployment plan presented as XML file.

11.4 ADePT as a deployment planner for ADAGE
In Chapter 4 we have surveyed some deployment tools. Most of these tools use user defined
deployment plan for deployment. Only two tools (Sekitei and Pegasus) uses AI based planner
for the generation of deployment plan. The planner used by these tools are specific for the
application to be deployed.

Among surveyed tools, ADAGE seems very interesting tool for the deployment of grid ap-
plications. Even though ADAGE contains a deployment model that specifies how a particular
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component can be installed, configured and launched on a machine. However ADAGE has
no intelligent deployment planning algorithm. Currently, there are two very basic planners
implemented: round-robin and random. ADAGE team note a strong need of intelligent de-
ployment planning algorithms [60]. As such, ADAGE is a framework where to plug planner.
The two provided planner are just toy planner to validate the proposition.

Figure 11.4 gives an outline how ADePT can be merged in ADAGE. The base of this figure
is taken from Figure 12.2 of [60]. ADAGE team thought that deployment planner is difficult
to conceive. So to minimize the number of implementations of planners for each planning
algorithm they introduced the concept of general description. Thus each box in Figure 11.4
represents the general layout of the information. “Generic application description”, represents
an application which is converted to general form of application description by a simple con-
verter. The latter is given as input to the deployment planner, here it is ADePT. “Description
of computing nodes and storage” provides the information regarding the computing power,
storage capacity of grid resources. “Description of network topology of the grids” provides the
description of network topology as high level of abstraction, and thus easy to exploit by the
planner to place the components of the applications. As the “Deployed plan” in Figure 11.1,
submit a plan to which components of the middleware can be launched, so we assume that a
deployment plan that has to be improved can be submitted to ADePT through “Description
of network topology” by the ADAGE with some specific tag that defines that given descrip-
tion is an existing deployment. Or it may be better that ADAGE add a new input format
that can accept a deployed plan and can be used for improvement of the given deployment
or redeployment. As “Performance model” provides a indirect control on the performance of
deployment plan by controlling the throughput calculation model in ADePT, similarly we can
assume that required information by ADePT can be transferred to it by “Controlling parame-
ters” of ADAGE with some modification, if required. “General deployment plan” in ADAGE
is represented by XML and ADePT also provides its deployment as an XML file.

11.5 Conclusion

In this chapter we have given our point of view to generate an automatic deployment planning
tool by implementing our theoretical results.

ADePT is a complementary for the deployment tools as it generates the deployment plan
automatically. ADePT saves time of end users, as it generates best deployment, which executes
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more user’s submitted applications in a time step. Even tool is not dependent on any particular
middleware, applications, and resources thus can be used to generate a deployment plan for
any middleware based on any type of application using different resources. As most of the de-
ployment tool takes XML file as an input its advantageous that ADePT generates deployment
plan in the form of XML file.

We also gave an outline that mention, how ADePT can be merged in ADAGE. The ideas
are very initial but we feel that it is a strong step, which will be very helpful to merge our
theoretical work to be used in other grid tools.
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Conclusion and Future work
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Chapter 12

Conclusions

The work presented in this thesis concerns about the efficient utilization of the resources pro-
vided by the grid platform through NES environments. As we saw in the first introductory
chapter of this thesis, grid platforms are very promising but are very challenging to use be-
cause of their intrinsic heterogeneity in terms of hardware capacities, software environment
and even system administrator orientations. Thus end-users uses grid resources to execute
their applications through NES environments, as these environments hides all the complexi-
ties of the grid platform from users by providing easy access to the grid resources.

We did a survey of most prevalent NES environment, so as to obtain a depth knowledge
of existing NES environments. In Chapter 2, we have presented six NES environments (NeOS,
NetSolve, Nimrod, Ninf, PUNCH, and WebCom) under various headings, enabling an objec-
tive comparison to be made. By objectively comparing these systems, an attempt is made to
enable potential NES users’ to choose an appropriate environment to best suit their needs. In
addition to these NES environments we also presented some other systems which are popular
grid middleware and grid systems. These systems work in same space as NES environments
but are different because some of them are based on cycle steeling concept unlike NES envi-
ronments, which are dedicated servers. And some other systems which are dedicated does not
provide scheduling system, job management services, queueing mechanisms as done by NES
environments.

After obtaining the knowledge of NES environments we analyzed the two main factors
that affects the efficient utilization of the NES environments. Even if we assume that NES
environment selects the best server for the execution of the user submitted requests, then also
these factors effect the performance of NES environment. These two factors are:

• scheduling technique used to schedule tasks on selected server

• deployment planning of NES’s components on the distributed resources.

Scheduling in client-server scenario

To meet the goal of the thesis, i.e., to use NES environments efficiently, the very first problem
with which we are confronted relates to applications scheduling. It is possible to find the com-
puting power and the capacity storage necessary for a task by using the available performance
forecasting tools like NWS [85], FAST [39], etc. However even if once the server is identified,
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that is best suited to solve the task, still it remains to determine a scheduling that offers the
greatest possible effectiveness for the execution of tasks on the selected servers.

NES environment generally use the Minimum Completion Time (MCT) on-line schedul-
ing algorithm where-by all applications are scheduled immediately or refused. This approach
can overload interactive servers in high load conditions and does not allow adaptation of the
schedule to task dependencies. Thus, we first studied the scheduling techniques that can be
adopted for scheduling tasks on NES environment. As a result, we presented algorithms for
the scheduling of the sequential tasks on a NES environment in Chapter 3. We mainly dis-
cussed a deadline scheduling with priority strategy that is more appropriate for multi-client,
multi-server scenario. Experimentally we proved that the deadline scheduling with priority
along with fallback mechanism can increase the overall number of tasks executed by the NES.

Automatic deployment planning

Once we have good scheduling algorithms to schedule the tasks on servers, the next impor-
tant factor that influence the efficiency of the NES environments is the deployment planning to
map the environment’s components on the available resources. Generally components of these
environments are mapped on the available resources as defined by the user or environment’s
administrator. Mapping of the components on to the available resources is called “deploy-
ment”. Their exist some deployment tools, that deploy the NES’s components on selected re-
sources. In Chapter 4 we have presented a survey of some deployment tools (ADAGE, JADE,
JDF, Pegasus, Sekitei, SmartFrog, and Software Dock). However, the deployment tools does
not allow the non-expert users to deploy middleware according to their applications simply on
grids because the input of these tool is a detailed deployment plan that is given by the users.
Deployment plan should mention all the pre-requisites required to use the grid resources effi-
ciently.

As NES is composed of different components and each component have specific function
to perform. Appropriate resource from a pool of resources should be selected to deploy accord-
ing to the component’s functionality. As explained in the introductory chapter of this thesis,
that depending on number of available resources many deployments are possible. So good
deployment is one that can execute maximum number of users’ submitted applications in a
time step.

Thus, to remove the second obstacle in the efficient use of NES environment, it is impor-
tant to generate a automatic deployment planning algorithms and heuristics. To generate a
deployment planning for a NES environment, we divided the deployment planning in three
parts. First, we tried to find an optimal deployment of middleware on cluster (homogeneous
resources). We thought of deployment on cluster because even to find a good deployment is
time consuming on homogeneous resources. We have proved this by an experiment in Chap-
ter 1. Secondly, we tried to find a deployment on heterogeneous resources. Because grid have
heterogeneous resources even if we consider a cluster of cluster, it may be possible that two
clusters’ resources can be different. Finally, we thought to improve the existing deployment,
because it is not always evident to deploy the middleware platform from scratch according to
the specifications of new submitting applications. Sometime it is useful to modify the existing
hierarchy with less cost and time then to deploy a new platform according to new requests.
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Optimal deployment planning on cluster

Finding a good deployment for homogeneous resources is not as simple as it may sound: one
must decide “how many resource should be used in total?”, “how many should be dedicated
to scheduling or computation?”, and “which hierarchical arrangement of schedulers is more
effective i.e., more schedulers near the servers, near the root node, or a balanced approach?”.

Initially we have presented an heuristic in Chapter 7, for hierarchical middleware deploy-
ment for a homogeneous resource. But the heuristic deployments are implemented under
limited condition, for example, a parent node can have either servers or other parent nodes as
children but not both. But later we found that if we consider the middleware working phases,
we can obtain an algorithm for optimal middleware deployment on homogeneous resources.

In Chapter 8, we have shown that the optimal deployment on cluster is a Complete Spanning
d-ary (CSD) tree complete spanning d-ary tree; this result conforms with results from the
scheduling literature. More importantly, we present an approach for determining the opti-
mal degree d for the tree. A CSD tree is a tree that is both a complete d-ary tree and a spanning
tree.

Automatic deployment planning on grid

After finding an optimal solution for the first step of the automatic deployment planning,
we move onto second step. However, finding the best deployment among heterogeneous re-
sources is a hard problem since it amounts to find the best broadcast tree on a general graph,
which is known to be NP-complete [15].

So we presented a deployment heuristic that predicts the maximum throughput that can be
achieved by the use of available nodes in Chapter 9. The main focus of heuristic is to construct
an hierarchy, so as to maximize the throughput of each node, where this throughput depends
on the number of children a node is connected with, in the hierarchy. The given heuristic
provides a deployment that can meet the user requests demand, if user demand is at most
equal to the maximum throughput.

Improvement of existing deployment

Finally, we gave a mathematical model that can analyze an existing deployment and can im-
prove the performance of the deployment by finding and then removing the bottlenecks in
Chapter 10. This is an heuristic approach for improving deployments of NES environments
in heterogeneous grid environments. The heuristic is used to improve the throughput of a
deployment that has been defined by other means. The approach is iterative; in each iteration,
mathematical models are used to analyze the existing deployment which identify the primary
bottleneck, and remove the bottleneck by adding resources in the appropriate area of the hi-
erarchy. Using this model we can evaluate a virtual deployment before a real deployment,
provide a decision builder tool (i.e., designed to compare different hierarchies or add new
resources) and take into account the hierarchies’ scalability.

Validation of deployment planning

Deployment planning algorithms and heuristic presented in part III were validated by imple-
menting them to deploy a hierarchical middleware DIET (presented in Chapter 5) on different
sites of Grid’5000, a set of distributed computational resources in France. To deploy DIET for
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experiments we used DIET deployment tool called GoDIET, presented in Chapter 6. Presented
experiments are designed to test the ability of our deployment planning models, to correctly
identify good real-world deployments. To implement our deployment planning, we have also
presented performance models for DIET middleware. Since our performance model and de-
ployment approach focus on maximizing steady-state throughput, our experiments focus on
testing the maximum sustained throughput provided by different deployments. We have pre-
sented experiments testing the accuracy of our throughput performance models, and tested
whether the deployment selected by our approach provides good throughput as compared to
other reasonable deployments.

A tool based on our automatic deployment planning models has been outlined in Chap-
ter 11.

Future Work
This work has led to opening up the further possibilities of improving the performance of NES
environments and their easy use. Here we are presenting some of them.

In the near future one of the principal objective is the implementation of theoretical de-
ployment planning techniques as Automatic deployment Planning Tool (ADePT).

It will be interesting to validate our theoretical concept of deployment planning by exper-
imenting with other hierarchical middleware like WebCom [67]. We would also like to imple-
ment deployment planning for arbitrary arrangements of distributed resources like P2P etc. As
most of the NES have their own deployment tool, it will also be interesting to use deployment
tools as plug-in to ADePT. Because for the experiments we did DIET deployment manually ac-
cording to the generated deployment plan. We manually submit the generated hierarchy.xml
to GoDIET and launch GoDIET to deploy the hierarchy. Thus if we use the deployment tools
as plug-in then according to the generated deployment plan for any NES environment, corre-
sponding deployment tool can be applied.

For the deployment plan generation we always give a set of available resources as an input.
But as the grid resources dynamically get connected or disconnected, so generated deployment
plan may not perform as well as it was estimated, because some selected resources may not
be available at the time of user’s request submission. So it will be interesting if deployment
planning tool can discover the resources at the time of deployment plan generation. Due to
the use of resource discovery concept, new resources can be known dynamically and in that case
it will also be interesting to develop redeployment approaches that can dynamically adapt the
deployment to workload levels after the initial deployment. We also envision enabling interac-
tive deployment and reconfiguration whereby users can dynamically reconfigure portions of
the their deployment. Even resource discovery and redeployment will also provides the fault
tolerance to the deployed hierarchy.

Another future work may include a tool for user’s enjoyment. It is true that to generate
a deployment plan it is advantageous to use a deployment planning tool like ADePT, but it
may be enjoyable for users to use a visual deployment tool. Visual tool will allow users to build
a graphical model of their desired deployment and export this model to a deployment tool for
launch.
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