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CONTRIBUTION A I’ALGORITHMIQUE
PARALLELE

Calcul numérique : des bibliothéques aux environnements de
metacomputing

Annexes : curriculum vitae et articles

Frédéric Desprez
20 juillet 2001

Ce document présente quelques unes de mes publications les plus significatives de mon travail depuis
la soutenance de ma thése. L'ordre n’est pas chronologique mais il respecte 1'ordre des chapitres du docu-
ment principal d’habilitation. Les trois premiers articles correspondent au chapitre 2, les deux suivants au
chapitre 3 et enfin les deux derniers correspondent au chapitre 4.

Chapitre A Curriculum Vitae
Je présente mon travail de recherche, d’enseignement et de tdches administratives depuis ma thése
ainsi que toutes mes publications.

Chapitre B Optimization of a LU Factorization Routine Using Comm unication/Computation Overlap
Ce premier article présente mes travaux avec S. Domas et B. Tourancheau sur 1'optimisation de la
factorisation LU grace aux recouvrements calculs/communication. Méme si les gains ne sont pas tres
important (20% au maximum), nous avons réussi a les modéliser de maniere précise et a tirer un
modele général de cette routine. Ces résultats ont été ensuite réutilisés dans ALASCA pour calculer
le cotit de calcul des routines afin de trouver les meilleures distributions.

Chapitre C Optimal Grain Size Computation for Pipelined Algorithms (1996)
Ces travaux ont été initié durant mon année au LaBRI en collaboration avec P. Ramet et J. Roman.
Apres avoir étudié durant ma these les recouvrements dans des cas linéaires simples, nous avons
étendu ces résultats a des polyndmes quelconques. Une bibliotheque a été développée qui permet de
fournir aux LOCCS la taille de paquets optimale.

Chapitre D Communications Optimizations and Efficient Load-balancing for a Volume Rendering
Algorithm on a Cluster of PCs (2000)
Cet article présente mes travaux avec F. Chaussumier sur 1'équilibrage des charges et les recou-
vrements calculs/communications dans un algorithme de rendu volumique. C’est une extension a
un probléme irrégulier de mes travaux précédents qui concernaient le traitement de structures de
données régulieres.

Chapitre E Scheduling Bloc k-Cyclic Array Redistrib ution
Ces travaux concerne 1'optimisation de 1’ordonnancement des communications pour le probleme de
la redistribution de données distribuées de maniere cyclique par blocs sur un réseau de processeurs.
Les applications de ce type de redistribution sont nombreuses (bibliotheques numériques paralleles,
compilation d’"HPF, etc.).

Chapitre F HPFIT : A Set of Integrated Tools for the Parallelization of Applications Using High Per-
formance Fortran
Cet article présente une partie du projet HPFIT avec notamment les travaux autour de la pa-
rallélisation automatique et la recherche de schémas macro-pipelines.

Chapitre G Mixed Parallel Implementations of the Top Level Steps of Strassen and Winograd Matrix
Multiplication Algorithms (2001)
Ces travaux présentent mes derniers travaux autour de l'algorithmique parallele mixte, c’est-a-dire
qui utilise a la fois le parallélisme de données et le parallélisme de tadches. Nous avons optimisé les



communications et le placement de données pour deux algorithmes classiques de 1’algebre linéaire,
Strassen et Winograd.

Chapitre H Scilab to Scilab ,, — The OURAGAN Project (2001)
Cet article représente un bilan du projet OURAGAN dont le but est de paralléliser I'outil SCILAB avec
différentes approches (bibliotheques de communication, interfaces pour des bibliotheques d’algebre
linéaire parallele, serveurs de calcul).

Chapitre | A Scalable Approach to Network Enabled Servers (2001)
Cet article présente mes travaux les plus récents sur le développement d 'un environnement extensible
pour la mise en place d’applications de type ASP (Application Service Provider) dans un environne-
ment de metacomputing.
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Appendix: vita and publications

Frédéric Desprez
July 20th, 2001

This document presents some of my main publications since my PhD defense.

Chapter A Vita (frenc h)
I describe my research, teaching and administrative work since my PhD and it gives a list of all my
publications.

Chapter B Optimization of a LU Factorization Routine Using Comm unication/Computation Overlap
This first paper presents my work in collaboration with S. Domas and B. Tourancheau around the
optimization of the LU factorization using overlap of computation by communication. Even if the
gains obtained are not that important (maximum of 20%), we managed to give an accurate model of
this optimization that leads to a general model of this routine. Then the results were used in ALASCA
to compute the computation cost of some numerical routines to be able to guess the most efficient
distributions.

Chapter C Optimal Grain Size Computation for Pipelined Algorithms (1996)
This work started during my year at LaBRI in collaboration with P. Ramet and J. Roman. The results
presented in this paper extend the results presented in my PhD thesis to general complexity functions
for computations and communications. A library was developed that gives the optimal packet size to
the LOCCS library routines.

Chapter D Communications Optimizations and Efficient Load-balancing for a Volume Rendering
Algorithm on a Cluster of PCs (2000)
This paper presents my work in collaboration with F. Chaussumier around the load-balancing and the
overlap of communications in a volume rendering application. This is an extension of my previous
work to irregular computations.

Chapter E Scheduling Bloc k-Cyclic Array Redistrib ution
This paper describes the optimization of the scheduling of communications for the problem of the
redistribution of a matrix distributed in a block-cyclic way on a network of processors. There are
many applications of such redistribution (parallel numerical libraries, HPF compilation, ...).

Chapter F HPFIT: A Set of Integrated Tools for the Parallelization of Applications Using High Perfor-
mance Fortran
This paper presents a part of the HPFIT project and more precisely our work around automatic par-
allelization and the generation of macro-pipeline communications.

Chapter G Mixed Parallel Implementations of the Top Level Steps of Strassen and Winograd Matrix
Multiplication Algorithms (2001)
This papers describes my latest work around mixed-parallelism, i.e. the simultaneous use of data and
task parallelism. We optimized the communications and data distribution for two basic linear algebra
algorithms, Strassen and Winograd.



Vi

Chapter H Scilab to Scilab ,, — The OURAGAN Project (2001)
This paper presents the OURAGAN project whose goal is to parallelize the SCILAB tool using differ-
ent approaches (message-passing libraries, interfaces for parallel numerical libraries, computational
servers).

Chapter | A Scalable Approach to Network Enabled Servers (2001)
This papers describes my latest work around the development of a scalable environment for ASP
(Application Service Provider) applications in a grid environment.
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Chapitre

Curriculum vitae

Ce document suit les indications pour la constitution du dossier de candidature a I'inscription a 'Habi-
litation a Diriger des Recherches de 1'Université Claude Bernard — Lyon I, précisées parla DAED (document
jaune). Les éléments suivants y sont développés :

mon Curriculum-Vitae (section A.1),

mes développements logiciels (section A.2),

mes travaux d’encadrement de jeunes chercheurs (section A.3),

mes activités d’évaluation (section A.4),

mes participations a des projets de recherche avec I'industrie (section A.5),
mes collaborations nationales et internationales (section A.6),

mes taches collectives (section A.7),

mes activités en enseignement (section A.8).

la liste de mes publications (section A.9).



Curriculum vitae

A.1 Curriculum-Vitae
Frédéric DESPREZ

CR1 - INRIA Rhéne-Alpes
Responsab le scientifique du projet CNRS-ENS Lyon-INRIA ReMaP

Né le 2 novembre 1964 a Beauvais (Oise)
Marié, 3 enfants

Dégagé des obligations militaires
Nationalité : francaise

Adresse personnelle : Adresses professionnelles
Laboratoire de I'Informatique du Parallélisme | INRIA Rhone-Alpes
Ecole Normale Supérieure de Lyon ZIRST, 655 avenue de 1'Europe
40 rue du Stade 46 Allée d'Ttalie Montbonnot
38550 SABLONS 69364 Lyon Cedex 07 38334 Saint Ismier Cedex
Tel : 04 74 84 24 53 Tel : 047272 85 69 Tel : 04 76 61 53 48
Mob : 06 12 92 60 03 Fax:04 727280 80 Fax:04 76 615252
E-mail : Frederic.Desprez@inria.fr
URL : http://lwww.ens-lyon.fr/~desprez/

Responsabilit &€ au sein de I'INRIA

2000- Responsable scientifique du projet ReMaP.
1997- Suivi des théses passées dans 1'Unité de Recherche Rhone-Alpes.

Formation

1994 (6 Janvier) These de Doctorat INP Grenoble, LIP (Laboratoire de I'Informatique du Parallélisme) :
“Procédures de base pour le calcul scientifique sur machines paralléles a mémoire distribuée” sous la
direction de B. Tourancheau (C.R. CNRS) et la responsabilité administrative de M. Cosnard (Prof. ENS
Lyon). Jury : Denis Trystram (Président), Gaétan Libert et Yves Robert (rapporteurs), Gérard Authié,
Michel Cosnard et Bernard Tourancheau (examinateurs) et Jack Dongarra et Marc Garbey (invités).

1990 D.E.A. d'Informatique fondamentale (ENS Lyon - 06/90) “Algebre Linéaire sur Tnode” DEA préparé
au Laboratoire LIP de 'ENS Lyon sous la direction de B. Tourancheau.

1989 Maitrise d'informatique (Grenoble - 06/89 - Mention AB).

1987 Licence d’informatique (Grenoble - 06/87 - Mention AB).

Séjour s a I'étrang er de plus de 3 semaines

1996 1 mois dans le Computer Science Dept. a1'Université du Tennessee (Knoxville - USA) dirigé
par le Professeur Dongarra.
1994 8 mois de postdoc dans le Computer Science Dept. de I'Université du Tennessee.

1993 1 mois dans le Computer Science Dept. a 'Université du Tennessee.



A.2 Développement de logiciels

Stages, emplois et service militaire

1998-
1995-98
1994-95
1990-93
1990
1990
1989

1988

CR 1 INRIA Rhoéne-Alpes, projet ReMaP.

CR 2 INRIA Rhone-Alpes, projet ReMaP.

Maitre de Conférences a 'ENSERB (Université Bordeaux I) et recherche au LaBRI (équipe
ALIENOR dirigée par Jean Roman).

These de doctorat au LIP.

Chef de projet chez SMART (Valence) pendant 6 mois. Protection d'un réseau Unix du
CNET (Issy-les-Mlx) avec des cartes a puces. Conduite de I'ensemble du projet (de la
spécification a la réalisation) et encadrement d’"un ingénieur.

Stage de DEA au LIP (4 mois). Etude d’algorithmes paralleles fondamentaux et
implémentation sur Tnode (TELMAT) a base de Transputers.

Stage de 2 mois au LIP. Etude et réalisation d’algorithmes de produit de matrices paralleles
sur machine Tnode.

Service militaire au 27¢ RCS de Grenoble (création d'une base de données sur un PC et
formation des appelés et des secrétaires).

Langues étrang éres

Anglais

parlé, lu et écrit couramment.

Participations a des projets nationaux, industriels et internationaux

Entre parenthese la période pendant laquelle j'ai travaillé sur un projet.
e Eureka EuroTOPS (6/93-10/98)

Responsable scientifique (95-97)
Responsable tache bibliotheques de calcul paralléles (09/93-12/95)
Responsable tache outil de parallélisation de codes Fortran 77 (10/95-10/98)

¢ INCO-DC Paralin (06/96-09/99)
Responsable tache parallélisation logiciel Scilab (06 /96-06/98)

e« TTN ProHPC (03/97-09/99)

Responsable action ACRA /Solid Dynamics (03/97-02/98)
Responsable action ACRA /CADOE (03/97-02/98)
Responsable action DYNA (03/98-10/98)

Responsable action METAL (09/98-01/99)

e ARC INRIA OURAGAN (01/98-12/00)
Responsable de I’ARC (90-00)

« RNRT VTHD (01/99-12/01)

Responsable du sous-projet 5 pour I'UR Rhone-Alpes
Responsable de l’action Scilab

A.2 Développement de logiciels

Mes travaux ont donné lieu a des développements logiciels importants. Certains de ces développements
ont été réalisés dans le cadre des projets Eureka EuroTOPS, TTN ProHPC, PARALIN et ’ARC INRIA OU-
RAGAN (décrits dans la section A.5).



Curriculum vitae

— TransTool Intégration des différents outils dans un seul environnement, développement des inter-
faces C, Lisp et TCL, développement du noyau d’optimisation, d’HPFize (outil d’insertion de direc-
tives), etc. (en collaboration avec A. Darte, ].-C. Mignot, C. Randriamaro, G. Silber).

— ScalLAPACK Optimisation de la factorisation LU de ScaLAPACK et développement d’une routine de
calcul de taille de bloc optimale (fonction de la taille de la matrice et du nombre de processeurs), étude
de la redistribution de matrices (en collaboration avec |. Dongarra, S. Domas, A. Petitet, C. Randriamaro et
Y. Robert). ScaLAPACK est diffusé par ftp.

- LOCCS Développement d'une version améliorée des LOCCS (avec interface portable MPI! avec nou-
velles routines (en collaboration avec P. Ramet et F. Chaussumier).

— Adaptor Amélioration de l'intégration des LOCCS dans Adaptor, amélioration du driver, nouveaux
types de schémas traités, etc. (en collaboration avec T. Brandes et |. Zory). Adaptor est diffusé par ftp.

— Scilab Intégration de PVM comme couche de communication d’une version parallele de Scilab,
développement d’une interface ScaLAPACK et définition des serveurs de calcul (en collaboration avec
les membres de I’ARC INRIA OURAGAN). Scilab est un logiciel diffusé mondialement par ftp, notam-
ment grace a sa version Linux.

A.3 Encadrement de jeunes chercheurs

Je soutiendrais mon Habilitation a Diriger des Recherches début Juin 2001.

A.3.1 Etudiants en thése
A.3.1.1 These de Stéphane Domas

J'ai co-encadré a 75 %S. Domas (MENRT au LIP) avec Bernard Tourancheau sur des problemes d’algebre
linéaire en parallele. Son but était d’améliorer une bibliotheque existante (ScaLAPACK) en proposant de
nouveaux algorithmes plus adaptés a une parallélisation, soit en proposant des nouveaux schémas de dis-
tribution de données ou en utilisant des pipelines de calculs et de communications.

Stéphane Domas a soutenu sa these le 23 Octobre 98. 1l a été recruté en 2000 apres son service militaire
et un an d’ATER comme Maitre de Conférences a I'IUT de Belfort et effectue sa recherche au LIFC dans
I’équipe de Jean-Marc Nicod.

A.3.1.2 Theése de Pierre Ramet

J’ai co-encadré P. Ramet avec Jean Roman (LaBRI) (25/75) sur des problemes de recouvrements cal-
culs/communications dans les codes scientifiques. Son but était de développer des techniques de calcul de
grain pour des algorithmes pipelines lorsque les polyndmes caractérisant les calculs (ou les communica-
tions) ne sont pas forcément des fonctions linéaires de la taille des données. 1l a travaillé également sur un
solveur parallele creux de type Cholesky Crout.

Pierre Ramet a soutenu sa theése le 12 Janvier 2000 et il a été recruté comme Maitre de Conférences a
I'TUT de Bordeaux I et effectue sa recherche au LaBRI dans 1’équipe de Jean Roman.

A.3.1.3 These de Cyrille Randriamar o

J’ai co-encadré Cyrille avec Yves Robert (50/50) sur des probléemes de distribution et redistribution semi-
automatiques de matrices avec HPF dans le cadre du projet TransTool. Il a également travaillé sur 1'opti-
misation de I'ordonnancement des communications pour la redistribution de matrices distribuées avec des
schémas cycliques par blocs.

Cyril a soutenu sa these le 24 Janvier 2000 et a été recruté comme Maitre de Conférence a 1'Université
d’Amiens et effectue sa recherche au LaRIA dans 1’équipe de ]J.-F. Myoupo.

Message Passing Interface



A.3 Encadrement de jeunes chercheurs

A.3.1.4 These de Frédérique Chaussumier (soutenance en Juin 2001)

Frédérique (3eme année de CIFRE avec MS&I?, 50% avec M. Loi) a travaillé sur I'optimisation des com-
munications dans des applications irrégulieres et sur environnement hétérogene. Dans un premier temps,
elle a travaillé sur 1'optimisation d’un algorithme de rendu volumique 3D en utilisant des techniques de
recouvrement calcul/communication et d’équilibrage des charges élastique. La machine cible était une
grappe de PC connectés par un réseau Myrinet et les contraintes industrielles étaient d’obtenir un rendu
en temps réel lorsque 1'on effectuait une rotation arbitraire du volume. Ensuite, elle a travaillé sur une
application benchmark du programme américain ASCI, le Sweep3D en utilisant encore des techniques de
pipelines.

A.3.1.5 These de Frédéric Suter (en cours)

Frédéric (2eme année de MENRT au LIP, 100%) travaille sur des problemes d’optimisation de codes
numériques utilisant a la fois le parallélisme de taches et le parallélisme de données. Les résultats de ses
travaux seront utilisés par ’environnement DIET pour répartir la charge entre les divers serveurs.

A.3.1.6 These de Martin Quinson (en cour s)

Martin (1ere année de MENRT au LIP, 100%) travaille sur la mise en place de serveurs de calcul dans
un environnement de metacomputing. Ses premiers travaux consistent a développer un outil d’évaluation
de performances statiques et dynamiques de réseaux et de bibliotheques de calcul. Cet outil permettra a
I'ordonnanceur d’un environnement de type Network Enabled Servers d’évaluer le cofit des migrations de
données entre serveurs et le cotit de calcul des problemes a résoudre sur ces mémes serveurs.

A.3.2 Autres étudiants

- Etudiants de DEA

— Martin Quinson , a effectué son DEA en 2000 a I'ENS. Martin a travaillé sur 1’étude d"un environne-
ment d’évaluation de performances dans un environnement de metacomputing et son intégration
dans Scilab// (co-encadrement 50/50 avec F. Suter).

— Nathalie Viollet, a effectué son DEA en 2000 a I'ENS. Nathalie a étudié la mise en place d"une base
LDAP pour la recherche de ressources logicielles dans un environnement de metacomputing et son
intégration dans Scilab// (co-encadrement 25/75 avec ].-E. Méhaut).

— Laurent Bobelin , a effectué son DEA en 99 a 'ENS. Laurent a travaillé sur des heuristiques de
placement de données pour des algorithmes & parallélisme mixte (co-encadrement 50/50 avec C.
Randriamaro).

- Jacques-Ale xandre Gerber, a effectué son DEA en 98 a 'ENS. Jacques-Alexandre a travaillé sur
des outils de transformation automatique de programmes Fortran 77 contenant des appels de bi-
bliotheques BLAS et LAPACK vers HPF (encadrement a 100%).

— Fabrice Rastello, a effectué son DEA en 97 a I'ENS. J’ai co-encadré Fabrice avec Yves Robert sur
des optimisations de communications et du grain de calcul dans les codes numériques (technique
du tiling) (co-encadrement 50/50 avec Y. Robert).

— Julien Zory, a effectué son DEA en 96 a 'ENS. Julien a étudié la recherche automatique de schémas
macro-pipelines et a continué l'intégration de la bibliotheque LOCCS dans le compilateur HPF
Adaptor (encadrement a 100%).

— Pierre Ramet, a effectué son DEA en 1995 au LaBRI. Pierre a travaillé sur des méthodes de calcul
de taille de paquets optimales pour les pipelines de communication (co-encadrement 50/50 avec J.
Roman).

— Pierre Garnier , a effectué son DEA en 1995 au LaBRI. Pierre a travaillé sur la parallélisation d'un
code du CEA al'aide de High Performance Fortran (co-encadrement 50/50 avec J. Roman).

— Bruno Jargot, a effectué son DEA en 1993 a I'ENS. Bruno a travaillé sur une interface orientée objet
pour la bibliotheque LOCCS (encadrement a 100%).

2Matra Systéme & Information
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- Etudiants de DESS

— Gilles Lebour geois, du DESS de Strasbourg (option parallélisme). Gilles a travaillé sur l’analyse
syntaxique et sur l'algorithme d’Allen et Kennedy dans le cadre du projet TransTool. A la suite
du stage, Gilles a été recruté 2 ans comme ingénieur d’étude INRIA dans le cadre du projet TTN
ProHPC.

— Lionel Tricon du DESS de Strasbourg (option parallélisme). Lionel a travaillé sur I’analyse de
dépendances et sur la recherche de boucles Cross-Processors dans le cadre du projet TransTool. A
la suite du stage, Lionel a été recruté 1 an comme ingénieur d’étude INRIA dans le projet ReMaP.

- Frédéric Naquin, du DESS de Lyon 1 (prom. 97) (option réseaux). Frédéric a comparé les différentes
couches de communications sur les réseaux de type Myrinet.

- Etudiants de Maitrise

— Stéphane Vernat, a effectué sa Maitrise & Lyon 1 en 97. J'ai co-encadré S. Vernat avec Stéphane
Ubéda sur la parallélisation du logiciel GRASS de systemes d’information géographiques.

— Dominique Ponsard, a travaillé en 98 sur le portage d'une application de modele numérique de
terrain sous MPI. Il s’agit d"une collaboration avec G. Vidal du laboratoire des Sciences de la Terre
de I'ENS Lyon. A la suite du stage, Dominique a été recruté comme ingénieur d’étude au CNRS.

— Martin Quinson , a effectué sa Maitrise a St Etienne en 99. ]’ai encadré M. Quinson sur I’optimisation
de la routine de distribution et de récupération de données de la bibliotheque ScaLAPACK.

— Thierry Murgue, a effectué sa Maitrise a St Etienne en 99. J'ai co-encadré T. Murgue avec S. Ubéda
sur le développement d'une interface graphique de visualisation de matrices creuses distribuées
dans Scilab.

— Autres encadrements

— Olivier Reymann, a travaillé en 96 sur la premiére version de TransTool, notamment sur 1'étude de
l'intégration de 1’éditeur XEmacs dans une fenétre Tk.

- Nicolas Bert, a travaillé en 96 sur le nettoyage de la bibliothéque LOCCS et sur sa version MPI.

A.4 Activit és d’évaluation

A.4.1 Jurys (théses, dipl 6me d’ing énieur)

J’ai été membre de plusieurs jurys de theses

— Asier Ugarte, soutenue le 04 janvier 2001 a Bordeaux (rapporteur),
— Eddy Caron, soutenue le 14 décembre 2000 & Amiens (examinateur),
— Fabrice Rastello, soutenue le 6 septembre 00 & Lyon (examinateur),
— Cyril Randriamar o, soutenue le 24 janvier 00 a Lyon (directeur),

- Pierre Ramet, soutenue le 12 janvier 00 & Bordeaux (directeur),

— Julien Zory, soutenue le 17 décembre 99 a Paris (examinateur),

— Stéphane Domas, soutenue le 23 octobre 98 a Lyon (directeur),

— David Laimani, soutenue le 6 janvier 97 & Besangon (examinateur),
- Makan Pourzandi , soutenue le 20 janvier 95 a Lyon (examinateur).

et d’un jury de diplome d’ingénieur CNAM :
— Véronique Chabanis , soutenu le 31 janvier 00 a Grenoble (examinateur).

A.4.2 Autres taches d’évaluation

J’ai du évaluer en 1997 le dossier déposé a la région Aquitaine par Serge Chaumette (LaBRI, Université
de Bordeaux).

Cette année, j’ai d1 évaluer une proposition de BOR pour 'INSA de Lyon ainsi quun projet autour de
l'utilisation d"une plate-forme de type grille de calcul pour le gouvernement belge.
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A.5 Participation a des projets de recherche avec l'industrie

A.5.1 Projet Eureka EuroTOPS

Le projet Eureka EuroTOPS avait pour but le développement d’outils pour la parallélisation d’applica-
tions sur machines paralleles 8 mémoire distribuée. C’était un projet européen dont les partenaires étaient
Matra Systémes et Information (MS&I), I'ENS Lyon, 'INRIA, le CNRS, Simulog, ESI, NA Software, et
quelques autres. Les machines cibles étaient la CAPITAN et le cluster de PC avec réseau Myrinet Peak-
Server installées au LIP.

Dans ce projet, j’ai participé dans un premier temps a la tdche portant sur les bibliotheques de calcul
numérique paralleles et leur portage sur la machine CAPITAN. Mes travaux sur 1’algebre linéaire parallele
cités précédemment entrent directement dans ce projet.

Ma seconde tache dans EuroTOPS consistait dans le développement du logiciel TransTool et de son
utilisation avec les outils de Simulog et NaSoftware.

De 1996 a la fin du projet (décembre 98), j’ai été en outre le responsable scientifique du projet pour le
LIP.

A.5.2 Projet INCO-DC Paralin

J’ai participé a la mise en place du projet PARALIN. Ce projet était un projet INCO-DC de la com-
munauté européenne avec des partenaires universitaires et industriels de France, du Chili, d’Espagne et
d’Uruguay. Le but était le transfert industriel du calcul paralléle dans 1'industrie miniére et de I'énergie au
Chili et en Uruguay. Ce projet est en relation avec le projet PARANDES?® dont le but était 'installation d"une
machine CAPITAN au Chili.

L'INRIA était impliquée dans ce projet avec les projets ReMaP et Promath (INRIA Rocquencourt). Notre
travail a consisté a porter une application d’optimisation de réseau électrique sur la version parallele de
Scilab a 'aide de PVM en collaboration avec Frédéric Bonnans de Promath.

Le projet s’est terminé en septembre 1999.

A.5.3 Projet TTN-ProHPC

J’ai participé pour le LIP et ReMaP a l'écriture du projet HPCN TTN ProHPC dont le but était de pro-
mouvoir l'utilisation du calcul parallele dans I'industrie [BBD198]. Le projet était constitué de quatre par-
tenaires : I'ENS Lyon (coordinateur), I'INRIA, MS&I et Simulog.

J’étais responsable pour le LIP de deux tdches du TTN dans I'action ACRA pour la dissémination du
calcul a haute performances dans les PME de la région. Les deux sociétés, CADOE et Solid Dynamics, ont
développé des logiciels dans le domaine de la mécanique (simulation). J’ai participé a la parallélisation de
ces logiciels en collaboration avec les ingénieurs du TTN en poste au LIP, C. Barberet et G. Lebourgeois.

L’action ACRA avec CADOE a donné lieu a une suite : le projet DYNA. Dans ce projet, j’ai étudié avec
G. Lebourgeois la parallélisation du noyau de calcul du logiciel, en I'occurence un solveur creux itératif.

Un autre projet du méme type a démarré avec la société SYSTUS : le projet METAL avec un code
d’éléments finis. ]’ai étudié la parallélisation du logiciel de la société en collaboration avec un ingénieur
de recherche INRIA, R. Choquet.

Le projet s’est terminé en septembre 1999.

A.5.4 Projet RNRT VTHD

Le but du projet RNRT VTHD * est de connecter une certains nombre de centres de recherche de France
Telecom et toutes les Unités de Recherche INRIA par un réseau a tres haut débit (2.5 Gigabits par seconde).
De nombreuses recherches sont effectuées autour des aspects réseaux et un sous-projet concerne les appli-
cations qui permettront d’exhiber les limites d"un tel réseau et les problemes dus a sa mise en place. Je suis

3du programme ITDC'94.
4réseau a Vraiment Tres Haut Débit.
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responsable de ce sous-projet au niveau de I'UR Rhone-Alpes et je 'anime au niveau national avec Thierry
Priol.

Nous avons également proposé une action de ce sous-projet dont le but est de porter nos serveurs de
calcul sur le réseau VTHD. Une telle bande—passante va nous permettre de déporter des calculs avec un
grain plus fin. Nous recrutons actuellement un postdoctorant (Eddy Caron) sur le sujet.

Le projet se terminera en décembre 2001.

A.5.5 Proposition de projet RNTL GASP

Je suis le responsable du projet RNTL GASP (Grid Application Service Provider) qui vient d’étre déposé
au ministere de I'industrie en février. Ce projet a pour but de développer une infrastructure logicielle per-
mettant la mise en place simple et performante d’applications de type ASP sur une plate-forme de meta-
computing. Les partenaires sont le projet ReMaD, le projet Résédas de I'INRIA Lorraine, 'équipe SDRP du
LIFC, le laboratoire IRCOM, le laboratoire des Sciences de la terre de 'ENS Lyon et Sun Labs.

A.6 Collaboration nationales et internationales

A.6.1 Relations académiques
A.6.1.1 Computer Science Dept, The Univer sity of Tennessee , Knoxville , USA

J’ai collaboré avec 1’équipe du Professeur Dongarra, autour de ScaLAPACK et en particulier de la redis-
tribution de matrices dans le cadre d'un PICS, d'un projet CNRS-NSF puis d'un projet INRIA-NSE. Nous
sommes en train de mettre en place une nouvelle collaboration avec 1’équipe de Jack Dongarra autour du
logiciel NetSolve et avec 1’équipe de Rich Wolsky autour du logiciel NWS.

Par ailleurs, j'ai effectué un postdoctorat de huit mois dans ce méme laboratoire a partir de février 1994.
En accord avec Jack Dongarra, j’ai continué mes recherches sur les bibliotheques de calcul et de communica-
tion en les intégrant dans les outils développés dans son laboratoire. ]'ai pu ainsi valider certaines méthodes
sur différentes nouvelles machines et aider les chercheurs a obtenir des codes performants et lisibles grace
a mes bibliothéques. J’ai également travaillé sur les routines de distribution et de récupération de données
dans ScaLAPACK.

J’ai ensuite effectué un séjour de trois semaines durant lequel nous avons travaillé sur la redistribution
de données [DDP198].

A.6.1.2 GMD/SCAI, Bonn, Allemagne

J’ai collaboré pendant trois ans avec T. Brandes. Thomas est le concepteur du compilateur HPF Adaptor.
Nous avons travaillé sur I'intégration de la bibliotheque LOCCS dans le compilateur et sur la définition des
fonctionnalités de TransTool.

A.6.1.3 LaBRI, Bordeaux

Collaborations avec J. Roman, S. Chaumette, M.-C. Counilh, E Pellegrini et P. Ramet de I'équipe ALIE-
NOR dans le cadre du projet HPFIT autour de la visualisation de données distribuées et de la parallélisation
d’applications manipulant des structures de données creuses, sur les bibliotheques LOCCS et OPIUM et
dans le cadre de ’ARC INRIA OURAGAN autour de 'utilisation de solveurs creux paralleles dans Scilab.

A.6.1.4 Résédas, INRIA-LORIA, Nancy

Collaboration avec E. Fleury et E. Jeannot dans le cadre de I’/ARC INRIA OURAGAN autour de I'op-
timisation du logiciel Netsolve (ajout de persistence de données sur les serveurs et ordonnancement des
taches) et interfacage de Scilab avec la bibliotheque ScaLAPACK.
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A.6.1.5 LIFC, Univer sité de Franche-Comt &, Besang on

Collaboration avec J.-M. Nicod et son équipe dans le cadre de I’ARC INRIA OURAGAN autour de la
gestion de serveurs sous CORBA et pour le développement d"un environnement hiérarchique d’agents.

A.6.1.6 LARIA, Université de Picardie, Amiens

Collaboration avec G. Utard et son équipe dans le cadre de I’ARC INRIA OURAGAN autour de l'inter-
facage de Scilab avec des bibliotheques out-of-core et 1’ajout de types distribués dans Scilab.

A.6.1.7 Métalau, INRIA Rocquencour t

Collaboration avec C. Gomez, S. Steer et M. Goursat dans le cadre de I’ARC INRIA OURAGAN autour
de la parallélisation de Scilab.

A.6.2 Autres relations académiques

Projet Promath, INRIA Rocquencour t : Collaboration avec F. Bonnans autour de la parallélisation
d’algorithmes d’optimisation avec Scilab (projet PARALIN).

J’ai participé aux diverses actions nationales de collaborations inter-laboratoires comme CAPA, RU-
MEUR, iHPERF et Grappes.

A.6.2.1 Projets académiques

ARC INRIA OURAGAN J’ai été responsable de I’ARC OURAGAN (Janvier 99-Décembre 2000) qui a fait
collaborer trois projets (Métalau a Rocquencourt, Résédas a Nancy et ReMaP a Lyon) et trois équipes (ALIE-
NOR au LaBRI, I'équipe de J.-M. Nicod au LIFC et I'équipe de G. Utard au LaRIA).

Les objectifs sont d’offrir aux utilisateurs 1'acces a diverses ressources de calcul (qu’elles soient
matérielles ou logicielles) et ce, méme si ces derniéres sont distribuées au sein un réseau. Le but est d’avoir
une plate-forme performante, facile d'utilisation (i.e., pas réservée uniquement aux seuls experts en pro-
grammation parallele) intégrant les mécanismes nécessaires pour pouvoir effectuer et utiliser des ressources
de calcul de facon distante. La facilité d'utilisation est primordiale et I’aspect interactif que I'on retrouve
dans Scilab doit étre conservé. La performance est garantie par I'intégration de bibliotheques paralleles de
calcul dense et creux au sein du logiciel Scilab et par la mise en ceuvre de politiques de redistribution, de
répartition de charge permettant d'utiliser au mieux les ressources de calcul disponibles et ce de la facon la
plus transparent possible pour l'utilisateur qui peut continuer a développer et prototyper ses applications
en ligne.

Nous avons obtenu un financement de 'INRIA qui nous a permis de recruter un postdoctorant pour
un an (E. Jeannot). Le travail d’Emmanuel a consisté a étudier NetSolve et a le modifier pour mettre en
place I’architecture logicielle de nos serveurs de calcul. Il a par ailleurs étudié l'interfacage de bibliotheques
paralleles de calcul creux au sein d'un outil comme Scilab (définition de nouveaux types et de nouveaux
opérateurs).

LARC OURAGAN s’est terminée en décembre 2000.

Projet NSF—INRIA autour du creux J'ai participé a la mise en place d"une proposition de contrat NSF-
INRIA sur des préconditionnements robustes et paralleles. Coté frangais, je suis coordinateur avec B. Phi-
lippe de I'IRISA. Y. Saad de 1'Université du Minnesota est le coordinateur c6té américain. Les labora-
toires impliqués sont en France le CERFACS, le projet ReMaP, le projet ALADIN, le LaBRI et aux Etats—
Unis 1'Université du Minnesota, I'Université de I'Indiana et le Lawrence Berkeley Lab. Le projet concerne
le développement de procédures de résolution de trés grands systémes linéaires a I'aide de méthodes
itératives, directes et hybrides. J'interviens pour 'optimisation 1'algorithmes numériques paralleles.
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Montage d’'un projet NSF-INRIA autour de NetSolve Je suis en train de mettre en place un programme
NSF-INRIA entre I'Université du Tennessee, le projet Résédas de 'INRIA Lorraine et le projet ReMaP au-
tour de nos travaux sur NetSolve. Cette collaboration a démarrée suite a la visite de Martin Quinson et
Emmanuel Jeannot dans le laboratoire de Jack Dongarra. Ayant optimisé le logiciel NetSolve de maniere
importante grace a nos recherches autour de Scilab (amélioration des transferts de données, augmentation
de la précision des prédictions des cofits de calcul et de communication dans la grille, etc.), les chercheurs
travaillant sur NetSolve nous ont proposé de mettre en place cette collaboration et de la financer en partie
grace a un programme NSF-INRIA.

Fédération de calcul lyonnaise J'ai participé a la réponse a l'appel d’offre de la région Rhone—Alpes.
Le but de cette action est la mise en place d’une fédération de laboratoires et donc de rassembler les forces
de calculs des divers centres de calcul et laboratoires lyonnais afin de favoriser les échanges entre les cher-
cheurs de diverses disciplines. Nous avons proposé d’apporter notre expertise en matiere d’algorithmique
parallele et de metacomputing ainsi que le portage d"une application sur la plate-forme obtenue grace au
financement de la région.

A.6.3 Relations industrielles
A.6.3.1 Sun Labs, Meylan

Je suis en train de mettre en place une collaboration avec la société Sun Microsystems et son entité de
recherche Sun Labs autour de serveurs de calculs accessibles depuis Internet. Nous avons proposé un projet
RNTL (Grid Application Service Provider ou GASP) avec eux et d’autres partenaires académiques.

A.6.3.2 Autres relations industrielles

En plus de mes collaborations avec des sociétés privées lors de projets industriels (voir chapitre A.5),jai
travaillé plus précisement avec la société Simulog pour interfacer nos développements autour de TransTool
avec l'outil Forsys-Partita.

A.7 Taches collectives

A.7.1 Direction du projet ReMaP

Depuis Septembre 2000, j’ai pris la suite d"Yves Robert a la direction du projet CNRS-INRIA-ENS Lyon
ReMaP °. Ce projet regroupe 10 permanents et 10 doctorants.

A.7.2 Organisation de conférences

En 1994, j'ai organisé avec S. Ubéda les Journées Industrielles du Parallélisme (JIP) a 'ENS. Ces journées
avaient pour but de présenter aux industriels 1'utilisation du parallélisme grace a une série de cours,
de présentations de “success stories” d’autres industriels et d’une journée de travaux pratiques sur ma-
chines (réseau de stations de travail). Nous avions également invité des vendeurs de machines pour qu’ils
présentent leurs produits. Notre but était également de rencontrer les industriels et d’essayer d’évaluer
leurs problemes de performances afin d’orienter certaines de nos recherches pour leur résolution. En 1995,
j’ai organisé la deuxiéme série de journées sur le méme théme avec Jean Roman a I'ENSERB a Bordeaux.

J’ai participé avec Jack Dongarra a la mise en place de la série de conférences “European PVM Users
Group Meeting” (appelée maintenant EuroPVM-MPI) dont la premiere édition a eu lieu en 1994 a Rome.

J'ai fait partie du comité d’organisation de RenPar’96, Rencontres Francophones du GDR PRS, qui ont
eu lieu a Bordeaux en mai 96. ]’étais entre autre responsable d"une journée applications paralleles.

Shttp://www.ens-lyon.fri~ desprez/ReMaP/
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Je suis co-organisateur avec Jean-Francois Méhaut, Yves Robert et Eric Fleury du Workshop MSA ¢ (Me-
tacomputing Systems and Applications) qui a eu lieu en 2000 a Toronto en marge de la conférence ICPP"2000
(International Conference on Parallel Processing) et qui aura lieu cette année a Valence (Espagne) en septembre
(durant ICPP’2001). L'objectif de ce workshop est de confronter les recherches sur les environnements
exécutifs et les applications pour le metacomputing.

A.7.3 Comit és d’édition

J’ai été co-éditeur (avec B. Tourancheau et L. Prylli) d"un numéro spécial de la revue Calculateurs Pa-
ralleles sur PVM (volume 8, numéro 2, date 1996).

A.7.4 Comit és de programmes

J'ai fait partie du comité de programme d’EuroPar’96 et j’étais local-chair de la session High-Performance
Computing and Applications qui a eu lieu a Lyon en aott 1996. ]’ai fait partie du comité de programme de
la Conférence EuroPVM’96 qui a eu lieu début octobre a Munich. J'ai fait partie du comité de programme
d’EuroPar’97 et j'étais co-chair de la session “Applications Industrielles”. J'ai été invité a étre local-chair
de la conférence EuroPAR'99 qui a eu lieu a Toulouse en 1999 (workshop Support Tools and Environments).
Je suis également chair dans la conférence EuroPAR’00 qui a eu lieu a Munich en 2000 (workshop High-
Performance Computing and Applications) .

Je fais partie du comité de programme du journal “Parallel and Distributed Computing Practices” 7 dont
I'éditeur en chef est Marcin Paprzycki.

A.7.5 Relecture pour des journaux et des conférences

J’ai été relecteur pour de nombreuses conférences (EuroPar, IPPS, ICPP, EuroPVM-MPI, PACT, HPCA,
STACS, ...) et revues internationales (Parallel Computing, Parallel Processing Letters, Journal of Parallel
and Distributed Computing, IEEE Transactions on Parallel and Distributed Computing, Theoretical Com-
puter Science, Journal on Supercomputing, etc.).

A.7.6 Groupes de travail ParaMAp

En 1995, j’ai mis en place a Bordeaux le groupe de travail ParaMAp® dont le but était, comme pour PA-
RAPPLI a Grenoble, de faire se rencontrer les experts du parallélisme et les chercheurs d’autres disciplines
ayant besoin de puissance de calcul.

A mon retour en 96, j'ai mis en place le méme groupe de travail a 1'ENS. Durant I’année 96, nous avons eu
8 exposés autour de themes aussi divers que le placement d’antennes radios, les systéemes d’informations
géographiques ou l'imagerie médicale. Toutefois, nous avons constaté la difficulté a faire collaborer des
chercheurs de disciplines différentes. Nous avons cependant eu quelques succes comme par exemple le
stage de Dominique Ponsard que j'ai co-encadré avec G. Vidal du laboratoire des Sciences de la Terre pour
la parallélisation avec MPI d'un gros code de Modeéle Numérique de Terrain. Ce logiciel a été déposé.

A.7.6.1 Suivi des théses a I'UR Rhone-Alpes

A TI'INRIA, j'assure le suivi des theses effectuées au sein de 1'UR. Mon travail consiste a controler les
dossiers des theses financées par 'UR, de donner un avis sur certains dossiers, a faire passer les thésards
en comité des projets pour des rapports d’avancement, et enfin a effectuer un suivi régulier de toutes les
théses en cours dans 'UR.

6http://www.ens-lyon.fr/~desprez/FILES/RESEARCH/CONF/MSA
7http:/lorca.st.usm.edu/pdcp/
8Parallélisme Massif et Applications
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A.7.7 Participation a diver ses commissions

Depuis 1999, je fait partie des Commissions de Spécialistes de 'ENS Lyon et de Bordeaux.
Je fais partie du comité de sélection pour la mise en place de la grappe de 200 PCs qui sera installée cette
année a 'UR Rhone-Alpes.

A.8 Enseignement

J’ai participé a des enseignements depuis le début de ma these. Disposant d"une bourse de I'INPG mais
effectuant ma theése a I'ENS Lyon, je n’ai pas pu étre moniteur et j’ai donc été vacataire a 'ENS Lyon puis
a I'IUT de Valence. Ensuite j'ai été recruté comme ATER a I’'ENS Lyon a la fin de ma thése. Ensuite, au
retour de mon postdoctorat, j’ai été recruté comme Maitre de Conférences a 'ENSEIRB de Bordeaux ot1 j'ai
enseigné dans la filiére informatique. Suite & mon recrutement en tant que Chargé de Recherche a I'INRIA,
j’ai souhaité continuer cette activité dans divers endroits (comme vacataire). ]’ai pu ainsi enseigner en DEA
a Lyon, de nouveau a I'ENSEIRB ot1 j’'ai été invité a donner un cours en 3éme année et en DESS réseau a
Lyon I. ]’ai également assuré des formations a Supelec, dans des tutoriaux en France et a I'étranger et dans
diverses écoles.

Durant tous ces enseignements, j’ai été amené a suivre des stages d’étudiants de tous niveaux, a rédiger
des polycopiés et a participer a I'activité pédagogique a travers des réunions et la mise en place d’options
d’enseignement. J'ai également mis en place divers cours comme a 'ENSEIRB (systéeme d’exploitation en
2éme année, parallélisme en 3eme année, équilibrage et régulation de charge en 3éme année) ou en DEA
d’informatique fondamentale & Lyon.

A.8.1 Cours al'Univer sité, a 'ENS Lyon et en Ecoles d'ing énieur

2000-2001 CR1 INRIA
e J’ai renoncé cette année a mes cours pour m’occuper a plein temps du projet ReMaP.
1999-2000 CR1 INRIA

¢ Cours de Recherche Algorithmique Numérique Paralléle au DEA D'Informatique Fon-
damentale de Lyon (24h de cours, 12 étudiants)

e Cours d’équilibrage et régulation de charge en 3¢éme année ENSERB a Bordeaux (20h
de cours, 12 étudiants)

e Cours et travaux pratiques de MPI en DESS Réseau a Lyon 1 (2h de cours + 9h de TP
pour 2 gpes, 40 étudiants)

1998-1999 CRI1 INRIA

e Cours et travaux pratique de MPI en DESS Réseau a Lyon 1 (2h de cours + 9h de TPs
pour 2 gpes, 40 étudiants)

o Cours d’équilibrage et régulation de charge en 3¢éme année ENSERB a Bordeaux (20h
de cours, 8 étudiants)

1997-1998 CR2-1INRIA
¢ Projet d’algorithmique paralléle en Magistere 2éme année a 1'ENS de Lyon.
¢ Cours de Recherche Algorithmique Numérique Paralléle au DEA D'Informatique Fon-
damentale de Lyon (20h de cours, 8 étudiants)
1996-1997 CR2 INRIA
e Projet d’algorithmique parallele en Magistere 2éme année a 'ENS de Lyon.

e Cours sur les architectures paralleles dans le cadre du Cours Postgrade en Informa-
tique Numérique de I'Ecole Polytechnique Fédérale de Lausanne (EPFL) (8h de cours, 15
étudiants).
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1995-1996

1994-1995

1993-1994

1992-1993

1991-1992
1990-1991

o Cours de Recherche Algorithmique Numérique Parallele au DEA D’Informatique Fon-
damentale de Lyon (20h de cours, 10 étudiants)

CR2 INRIA
¢ Projet d’algorithmique paralléle en Magistere 2eme année a 1'ENS de Lyon.
MdC ENSERB : Co-responsable de la 3¢me année option parallélisme,

e Parallélisme en 3éme année et DEA : étude et implémentation des algorithmes fonda-
mentaux vus en cours (tris, recherches, algebre linéaire, ...) avec PVM et HPF (60h de
TD/TP, 7 étudiants),

e Systémes d’exploitation en 2éme année : (Mise en place d’un nouveau cours, des TD
et du projet) (30 h de cours, 20h de TD, 48 étudiants),

e Programmation en 1ére année autour du langage C (30h de TD, 25 étudiants),
¢ Organisation de diverses soutenances de projets pour les trois années,

e Cours de 3h a Besancon (DESS Parallélisme) sur les environnements pour le pa-
rallélisme

e Cours de 3h a Nice (3eme année ESSI) sur les bibliothéques de calcul parallele.
ATER a ’ENS Lyon :

o Systéme et Logiciel de base en 1ere année de Magistere d'Informatique et Modélisation
(Responsabilité du cours, des projets et examens) (32h de cours, 15 étudiants),

o Algorithmique et architectures paralleles en 2éme année de Magistere (Mise en place
de nouveaux TD) (32h de TD, 15 étudiants).

Vacataire IUT Valence :

o Algorithmique et langage ADA au département ISI de I'IUT de Valence (96 heures de
TP, 70 étudiants),

e DBASE 1V et Teamwork (10h de TP, 70 étudiants),
e Permanence programmation pour les magisteres 1ére année (ENS Lyon).
e Permanence programmation pour les magisteres 1lere année (ENS Lyon).

e Systéme d’exploitation parallele (Trollius) présenté aux étudiants de DEA d’informa-
tique de I'ENS Lyon et a des chercheurs de I’école Centrale de Lyon (12h de cours + TP,
20 auditeurs).

e C avancé pour les moniteurs du CIES (16h de cours + TP, 30 étudiants).

A.8.2 Cours dispens és a des chercheurs et ing énieur s

2000-2001

1999-2000

1998-1999

1997-1998

1996-1997

e Cours a SUPELEC dans le cadre de la formation continue sur les environnements pour
la parallélisation d’applications numériques (3 de cours, 4 étudiants).

o Tutorial sur HPF, MPI et OpenMP avec Franck Cappello et Fabien Coehlo a I'Ecole
d’'hiver iHPerf qui s’est tenue a Aussois en Décembre 2000.

¢ Cours a SUPELEC dans le cadre de la formation continue sur les environnements pour
la parallélisation d’applications numériques (3h de cours, 6 étudiants).

o Cours et travaux pratiques sur MPI dans le cadre du Pole Scientifique de Modélisation
Numérique (PSMN) de Lyon (20h de cours/TPs, 10 auditeurs).

¢ Tutorial MPI-2-OpenMP avec Luc Giraud (CERFACS) lors de la conférence Euro-
PAR’99 (Toulouse, Aotit 99) (3h, 40 auditeurs).

e Cours a SUPELEC dans le cadre de la formation continue sur les environnements pour
la parallélisation d’applications numériques (3 de cours, 8 étudiants).

e Formation TTN ProHPC sur le parallélisme & I'ENS de Lyon
o Tutorial MPI lors d’EuroPAR’97 (Passau, Aotit 97) (3h de cours, 50 participants)
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1995-1996 e Ecole du CNRS sur les outils du parallélisme a I'ENS de Lyon

1994-1995 e Formation MPI lors des Rencontres Francophones du Parallélisme RenPar’7 a Mons
(4h de cours) (juin 1995),
o Cours GRECO Informatique avec Bernard Tourancheau “La programmation d’appli-
cations scientifiques sur les ordinateurs paralleles 8 mémoire distribuée” (6h de cours, 20
auditeurs),
e Cours sur les recouvrements calcul/communication dans le cadre d"une journée “Pa-
rallélisation automatique et les supports run-time” organisée par Marc Gengler a 1’'Ecole
Polytechnique Fédérale de Lausanne,
e Cours sur les environnements pour la parallélisation de code en milieu industriel lors
des Journées Industrielles du Parallélisme (LIP ENS Lyon) (1430 de cours, 55 auditeurs).

1993-1994 e Cours sur les architectures paralleles avec Michel Cosnard a 1’Ecole d’Automne CAPA
“Conception et Analyse des Algorithmes Paralleles” (1430 de cours, 50 auditeurs),
e Formation sur les environnements de programmation pour le parallélisme lors des
Rencontres RenPar’6 a Lyon (2h30 de cours, 30 auditeurs),
e Cours et travaux pratiques sur les bibliotheques pour le “Cours Avancé de Calcul
Scientifique Parallele” du Centre Pour le Développement du Calcul Scientifique Pa-
rallele de Lyon I (2h de cours, 5h de TP, 30 auditeurs).

1992-1993 e Cours sur les bibliotheques pour supercalculateurs dans le cadre de la formation des
ingénieurs de recherche (ENS Lyon) (2h de cours, 40 auditeurs).

1991-1992 e Formations UNIX sur SUN aux chercheurs du laboratoire de mathématiques de 'ENS
Lyon (6h de cours + TP, 20 auditeurs).

A.8.3 Responsabilit és liées a I'enseignement

J’ai été co-responsable (avec Jean Roman) de la troisitme année d’informatique a I’ENSEIRB pour
I'année universitaire 94-95.
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Optimization of a LU Factorization Routine

B.1 Introduction

The LU factorization is the kernel of many applications. Thus, the importance of optimizing this rou-
tine has not to be proven because of the increasing demand of applications dealing with large matrices. Its
efficient parallel implementation can bring real improvements in the execution speed of the whole applica-
tion. The speed-up depends greatly on the kind of supercomputer chosen. Vector machines have very high
performances, but a prohibitive cost. Distributed memory machines seem to be a good balance between
performances and cost.

Portability is one of the key issue of computer programming. Many libraries have been designed to en-
sure portability and performances across multiple architectures. The BLAS [4, 5, 10] and LAPACK [6] are
available on many platforms, provided by computers vendors. LU factorization was released in the LA-
PACK package, using levels 1, 2 and 3 BLAS. ScaLAPACK [1] is the parallel version of a subset of LAPACK.
ScaLAPACK has been designed to ensure portability, performances and ease of use across many parallel
machines. Matrices are distributed in a block scattered way. Parallelism is hidden in a parallel version of the
BLAS called PBLAS [25]. Communications between processors on a virtual grid are done using the BLACS
package [7].

The aim of this paper is to show that improvements can be obtained in the existing ScaLAPACK LU
factorization routine by the use of overlap techniques.

The first section presents the parallel block LU decomposition. The second section presents a recent
bibliography on the parallel LU factorization. It contains a selection of papers that reflects the different
solutions for this problem. The third section presents a complexity study of the ScaLAPACK LU routines,
and two possible optimizations based on communication / computation overlap. The main goal of the
complexity analysis is to provide the optimal block size for the block scattered decomposition, but it also
gives information about the communication phases that may be overlapped.

B.2 Parallel Block LU Decomposition

In ScaLAPACK, the parallel LU factorization uses a block scattered decomposition of matrix A on a
P x @ processors grid. The M x N matrix is divided in square blocks (r x r). Thus, each processor owns a

local matrix with [Piw-l X [&-I blocks. This distribution is really suitable for the block LU decomposition

and it provides a good load balancing between processors.
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FI1G. B.1 - Block scattered decomposition of a 12r x 12r matrix on a 2 x 3 grid.

Figure B.1 shows how to distribute the r x r blocks of a 12r x 12r matrix on a 2 x 3 grid in a block
scattered way. Squares marked with a number represent a single block of the global matrix. For example,
all grey blocks belong to processor 0.
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The block LU decomposition consists in three phases, repeated as many times as there are block columns
to be factorized in the global matrix : instead of working on a single column of the global matrix A4 at a time,
r columns are factored at each step. And for convenience, the local L and U matrices are stored in place of

the matrix to be decomposed.

/—/H
A Ao L 0 Uy Uo
M —_— [
A Ay Ly Ly 0 Uy

FIG. B.2 — First step of the block LU factorization.

peol =0
prow =0
for k=0 to min(My,Ny) —1 by step r do
for i=0to r—1 do
if  (my_col = pcol) then
find pivot and its position

end if
broadcast the two values to all processors
exchange pivot rows phase 1
if  (my_col = pcol) then
divide under-diag. elts. of col. i by pivot
update col. i+1 to r1 /* _GER?¥
end if
end for )

if  (my_row = prow) then

broadcast Ly, to all processors of the prow row hase 2
solve Loo.Upy = A01 [* _TRSM?* P
end if )

broadcast L;g on processors rows
broadcast Uy, on processor  columns phase 3
Update All «— All — LlO-UOI *  _GEMM¥/

peol = (peol + 1)mod@Q
prow = (prow + 1)modP
end for

FIG. B.3 — Parallel block LU factorization using a block scattered data distribution.

According to Figure B.2, the three steps are the followings :
— in order to obtain (Lgg, L1¢) and Uy, a simple Gaussian elimination is computed on (ﬁfg)
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Loo-Uoo = Aoo (B.1)
L19.Ugo = A1 (B.2)

— the Uy block is obtained by a triangular solve (see equation B.3).

Loo.Upr = Aoy (B.3)
— Ly;.Uy1 is given by equation B.4. A matrix product is needed (411 — L19.Up1).

Lio.Uo1 + L11.Ur1 = Any (B.4)

The three steps are recursively computed on L1.Ui; to obtain Lqy and Uy

The general parallel algorithm is given in Figure B.3. _GERis a level 2 BLAS, _TRSMis the level 3 BLAS
triangular solve routine and _GEMNk the general matrix product routine.

The ScaLAPACK routines PDGETRRnd PDGETF2execute the block LU factorization on a matrix distri-
buted in a block scattered way. Figures B.4 and B.5 represent the execution schemes of these two routines :
- PDGETF2performs the factorization of a block column to compute Lgg,L1o, and Uy (phase 1 of the
general algorithm in Figure B.3).
- PDGETRFalls PDGETF2 then updates the remaining blocks of the matrix to compute L11.U11, Up1
(phase 2 and 3 of the general algorithm in Figure B.3).

B.3 Related Work

Various methods have been proposed to improve the parallel LU factorization. The corresponding pa-
pers present experiments which are sometimes corroborated by complexity studies.

In [8], a row oriented method is presented with an efficient pivot selection. It uses a reverse spanning tree
broadcast to choose the real pivot among all the local pivots, owned by different processors. In ScaLAPACK,
it is now achieved by the BLACS operation .GMAX2DFurthermore, in [2], a load balancing strategy for the
choice of the pivot is added to the row oriented method with a low cost row interchange.

Meanwhile, a row distribution supposes that the real pivot is often chosen on a different processor than
the owner of the current row. Thus, there are some communications to exchange and to broadcast the pivot
TOW.

In [11], a column-scattered distribution is chosen with the well-known pipelined ring algorithm. A com-
plete performance estimation is provided for distributed memory parallel machines, and compared to ex-
perimental results.

In [3], a column-scattered distribution is chosen and asynchronous communications are used to overlap
computations (columns updates). A theoretical model is given for the complexity on a complete network
and a ring topology.

The two last methods are quite efficient because choosing the pivot on a single processor (instead of
all, like in [2, 8]) is very fast and exchanging rows occurs in local memory. Therefore, it uses a fine grain
parallelism.

ScaLAPACK LU is a block LU decomposition with a block scattered distribution of the data. In [25], a
complexity study and different assumptions on the choice of the block size and the grid size are proposed.
It appears that a rectangular grid with few rows of processors is optimal (for the reasons exposed upper).
Thus, it can use the best of the precedent methods but with coarse grain computations.

The block scattered distribution used in the ScaLAPACK LU factorization seems to be the most interes-
ting solution for distributed memory computers, as far as the block and the grid sizes are well chosen.

Consequently, this paper presents an optimized version of LU factorization with a block scattered dis-
tribution and an overlap between communications and computations. It also gives a method to compute
an optimal block size without an “enquiry routine” (as previewed in [25]).
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in the current
processor column ?

no

yes

PDGETF2

decompose a block column :

searching for local
maximum value :

IDAMAX

searching for maximum
value between each
processor of the
current block column :

DGMAX2D

yes

pivot=07?
no

no

have pivot ?
yes

singularity found !!

broadcast pivot information :

receive pivot inforamtion :

broadcast local pivot line:
and pivot information

DGEBS2D

receive pivot line:
and pivot information

DGEBR2D

have current line ?

PDLASWP

no

yes

yes

IGEBS2D IGEBR2D
exchange part of rows exchange rows :
not swi in pdgetf2 :

appedin pdg PDLASWP

FIG. B.4 — Execution scheme of the PDGETRF

routine.

compute block row of U :
PBDTRSM

update trailing submatrix :
PBDGEMM

next block column

swap local pivot line
and local current line:
DSWAP

exchange local pivot line

and local current line :

DGESD2D
DGERV2D

DSCAL
DGER

scale column by pivot
and update local matrix :

next column

have current line ?

no

FIG. B.5 — Execution scheme of the PDGETF2
routine.

B.4 Analysis and Optimization of the ScaLAPACK LU Factorization

B.4.1 Comple xity Analysis

A prediction of the execution time is important to confirm the experimental results. The value of the
parameters which influence the execution time can be deduced from the model. Furthermore, it gives the
execution time of the communication phases. Such predictions are very interesting to choose what commu-
nications to overlap.

In the ScaLAPACK LU factorization, performances depend greatly on the block size used for the block
scattered decomposition. Thus, it is interesting to compute the optimal block size to avoid a number of
tests. It is also interesting to compute automatically the best data distribution (for parallel compilers, for

example).

Figure B.6 shows the impact of the block size on the performance of the ScaLAPACK LU factorization.
On the Intel Paragon at the University of Lyon, a size of 64 is less efficient than 8, which is the optimal value.
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160 T T
optimal blocksize : 8 —
blocksize : 64 -----
140 ,
120 —
100 | E
g
£ 80 | g
s
60 |- g
40 R
20 + i
O - 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800

matrix size (in double precision)

FIG. B.6 — Performance (In Mflops) of LU factorization on 4 processors with two different block sizes on
Intel Paragon.

B.4.1.1 The Model

In this section, the theoretical optimal block size Sy is obtained by an interpolation, based on experi-
mental measurements (for a given supercomputer) of the LU subroutines. For all subroutines function of
Sp (see below), the execution time is expressed literally, and then derived to find the optimal S.

The complexities are given below with Sy as the block size, P, and P, as the number of processor
rows and columns, and M as the matrix size. The subroutines names are the BLAS or LAPACK names ex-
pressed in Figures B.4 and B.5. We assume that the global communications (DGEBS2D, DGMAX2D, ... )
are proportional to the basic communication time ¢(L) = 3 + L. For a given global communication op,
top(L) = f(B + L7), where f is determined by the communication scheme that achieve the global commu-
nication. For example, a tree broadcast on a row of processors is achieved in ty..e = [logaP.].[8 + L7], and
a ring broadcast in toring = (P. — 1).[8 + L7]. The f function used to compute the total execution time is
given in the expressions below.

B.4.1.2 Subroutines used in PDGETF2

— IDAMAX : is executed S; times for each PDGETF2call. There are |'SMb'| PDGETF2calls during the
factorization (Figures B.1 and B.4). The execution time of a single IDAMAXcall is linear.

147

Tidamaw = E Sb-[aidamaw(sb X [%T_]) + bidamuz]
i=1

— DGMAX2D : is executed Sj times for each PDGETF2call. The execution time of a single DGMAX2[Rall
is linear but proportional to the number of processors

ngmaw = [S_A{]-Sb-f[asendd + bsendd] ! with f = [lOQZPT]

— DCOPY : is executed 2 x Sp times for each PDGETF2call, with a fixed data size Sy. It is first used to

U agendd = 7 and bgengq = B- These parameters are for double precision buffer send. For integers, the az¢pq; notation is used.
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copy the current pivot segment to broadcast it, and secondly to copy the real pivot segment into local
matrix. The execution time of a single DCOP¥all is linear.

Tdcopy = 2'[5_]\{-"Sb-[adcopysb + bdcopy]

— DGEBS2D,DGEBRZ2D : is executed S times for each PDGETF2call, with a fixed data size Sp.

Tbroadcastd = [SMb—l-Sb-f[asenddSb + bsendd] with f = ”OQZPT_]

— DGESD2D,DGERV2D : is executed Sj times for each PDGETF2all, with a fixed data size Sp.

Tsend = I_SMb-l -Sb-f[asenddsb + bsendd]

— DSCAL : is executed S; times for each PDGETF2call. The execution time of a single DSCALcall is
linear.

[$1 '
Tdscal = z:l Sb-[adscal(sb X (%T‘I) + bdscal]

i

— DGER : is executed S, times for each PDGETF2call, with a decreasing data size. The execution time

of a single DGEReall is quadratic. It is a level 2 BLAS which computes A + az.y* + A with Almxn)
tdger(m; TL) = (adgerm + bdger)-n + (Cdgerm + ddger)

[$:1s,-1 . .
nger = 231 ‘ [(adger(sb X [%T-D + bdger)-j + (cdger(Sb X [ﬁ-l) + ddger)]

i=1 j=

J

B.4.1.3 Subroutines used in PDGETRF

- IGEBS2D,IGEBR2D : is executed [SMb] time, with a fixed data size Sj.
Tbroadcasti = [SMb_] -f[asendisb + bsendi] with f = I_l092Pc—|

— PDLASWP : is executed [SMb] time, but exchanges S rows at one time. We assume that there is a ne-
glectful number of times for which the pivot is at the right place. Furthermore, the probability to find
the pivot on the same processor that owns the current row is considered uniform. In the expression
below, Npem is the number of times where the rows are swapped within local memory, and N¢om,
when the rows are swapped by communications. These parameters can be computed precisely for a
given M, Sy, and P,.

[5;1 [%1
Tswap = Nmem-[adswap(sb X ’V p’; -‘ )+bswap]+Ncom-[(2-adcopy+asendd) (Sb X ’V Pi -‘ )+(2-bdcopy+bsendd)]

— PBDTRSM : is executed [SMJ — 1 times, with a variable data size, multiple of S. It must be decompo-

sed in two parts :

1. broadcasting : the factored column can be broadcast in one chunk in order to distribute the
current Lgg block (see figure B.2) for DTRSMomputation, and L1 for later DGEMMomputation.
Before broadcasting, the whole column is copied in a working buffer.

N .
Tbroadcastd = E [(f(asendd) + adcopy)(sg X [-P%r-l) + (f(bsendd) + bdcopy)] with f = [lOQQPc-l
i=2

2. DTRSM: The execution time of a single DTRSMall is cubic. It is a level 3 BLAS which computes
B + a.A7'.B with A(mxm) and B(an) :

tdtrsm(ma ’I’L) = (adthmn + bdtrsm)-m2 + (cdtrsmn + ddtrsm)-m + (edtrsmn + fdtrsm)
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(2471 . -
Torrsm = ; [(adtrsm-(sb X ’V%c-‘) + bdtrsm)-sl? + (Cdtrsm-(sb X ’V%C-‘) + ddtrsm)-Sb +
(edtrsm-(Sb X ’V%c-‘) + fdt’rsm)]

— PBDGEMM : executed [SMJ — 1 time, with a variable data size, multiple of Sy. It must be decomposed
in two parts :

1. broadcasting : the last factored row (see DTRSNImust be broadcast in order to achieve DGEMM
computation. Before broadcasting, the whole row is copied in a working buffer.

[#1-1

Toroadcastd = ; [(f(asendd) + adcopy)(sg X [%ﬂ]) + (f(bsendd) + bdcopy)] with f = |—l092Pr-|

2. DGEMM The execution time of a single DGEMMall is cubic. It is a level 3 BLAS which computes
C + a.A.B + 8.C with A(mxk)/ B(an) and C(an) :

tdgemm (m7 n, k) = (adgemmm-n + bdgemmm + CdgemmTl + d)k +

(edgemmm-n + fdgemmm + gdgemmn + h)

) i
TpgEmMM = Z:ZI [(adgemm-Sb + bagemm)(Sp X [Fr-‘ ).(Sp x [FC-‘) +

i -‘) + (edgemm-Sp + fagemm)(Sp % [ib T

(cdgemm-sb + ddgemm)(sb X ’VFT

(gdgemm -Sb + hdgemm)]

In order to compute the optimal block size, all the precedent equations have been derivated over Sj.
The total complexity optimum is obtain when the sum of the derivatives equals zero. Hence, the optimal
block size is given by the resolution of a third degree equation. We computed the three roots for different
grid sizes and matrix sizes. Only one solution was positive each time. Results are given in Tables B.1 and
B.3. It gives the optimal block size as a function of different grid sizes and matrix sizes (1000 signifies a
1000 x 1000 matrix in double precision).

B.4.1.4 Results on an Intel Paragon

The Intel Paragon is a distributed memory machine based on i860 processors connected via a 2D grid.
Each processor reaches about 50 Mflops at peak performance.
Five important points have to be noticed :
— Theoretical optimal block sizes are close to the experimental ones. They range between 7.2 and 10.1
and actual tests give an optimal block size of 8 or 10 on a 4 x 4 grid?.
— The theoretical optimal block size is a function of the matrix size, and it raises up to a top value around
10. But this size is a real. A “good” block size is the nearest integer value from the theoretical one.

2 A size of 16 was found on previous tests. It has been done on the same machine but with an older version of the operating system.
Results depend greatly on the machine and its system.
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grid size matrix size

1000 | 2000 | 3000 | 4000 | 5000 | 6000 [ 7000 | 8000
4x4 831 | 9.28 | 9.64 | 9.83 | 994 | 10.0 | 10.1 | 10.1
8x8 738 | 838 | 879 | 9.03 | 917 | 9.27 | 935 | 941

16x16 | 726 | 80 | 838 | 8.61 | 8.77 | 888 | 8.96 | 9.03

TAB. B.1 — Optimal block size on a Paragon system.

type matrix size
1000 | 2000 [ 3000 | 4000

experimental | 8-9 8 8 10
theoretical | 8.31 | 9.28 | 9.64 | 9.83

TAB. B.2 — Comparison between theoretical and experimental block sizes on a Paragon system.

— The optimal block size hardly depends on the number of processors. Asymptotic values are 9 for 256
processors and 10 for 16. Again, experimental results confirm this point.

— According to experimental results, the grid shape has no real influence on the optimal block size,
though it greatly influences the execution time [25]. A rectangular grid with few rows of processors
works faster than a square grid. There are less communications since pivoting is achieved more often
in local memory.

— Results are identical if only the subroutines DGERDTRSMand DGEMMre used for block size compu-
tation (they represent 95% of total computation time).

B.4.1.5 Results on an IBM SP2

The IBM SP2 is also a distributed memory machine based on RS6000 processors connected via a multis-
tage network. Each processor reaches 265 Mflops at peak performance.

matrix size

256 | 512 | 768 | 1024 [ 1280 | 1536 | 1792 | 2048
2x2 255298328355 | 379 | 402 | 423 | 444
3x3 | 241275297 | 316 | 33.3 | 35.0 | 366 | 38.0
4x4 | 235|264 282297 | 31.0 | 323 | 335 | 347

grid size

TAB. B.3 — Optimal block size on an IBM SP2.

Three important points have to be noticed :

— The experimental block sizes are quite difficult to obtain because the execution time can vary between
two executions. The results in Table B.4 are the average optimal block sizes given by the executions.

— Some experimental values are quite far from the theoretical optimum. But in most cases, this optimum
gives a performance very close from the best experimental result. This is particularly true for grids
smaller than 2 x 4. For example, on a 2 x 2 grid with a matrix size of 1024, the theoretical value is 35
and the experimental is 20. The performances are respectively 280 and 270 Mflops which represents a
gap of 3.7%.

— On the SP2, the optimal block size is very dependent from the grid size and the matrix size. This
justifies the interest of the complexity analysis.
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matrix size

256 | 512 | 768 | 1024 | 1280 | 1536 | 1792 | 2048

3x3exp. | 27 33 30 35 36 35 38 38
3 x 3theo. | 24.1 | 275 | 29.7 | 31.6 | 333 | 35.0 | 36.6 | 38.0
1x9exp. | 27 25 24 25 26 27 26 27
1x9theo. | 203 | 21.7 | 22.7 | 23.7 | 24.6 | 254 | 26.3 | 271

type

TAB. B.4 — Comparison between theoretical and experimental block sizes on an IBM SP2.

B.4.2 Optimizations

The ScaLAPACK version of LU has been implemented in order to be scalable : each subroutine call
is a BLAS or BLACS call. These two libraries are already fully optimized for a wide range of computers.
Furthermore, the minimal number of operations to achieve a LU factorization is well-known (§n3 + 2n?).
Thus, only communication phases can be optimized since the computation time is fixed. Asynchronous
messages are used to overlap communications with computations.

B.4.2.1 Broadcast Overlap

By looking closely at the algorithm, we can see that processors are often waiting results from other
processors ! During the block column decomposition, only a processor column is working. And only one
processor row is working during the triangular solve. This brings us to the first optimization solution :

“Instead of broadcasting (Lo, L10) panel before the triangular solve (_TRSM, do it at the same
time ”

This means that general synchronous BLACS broadcast routines ((GEBS2Dand _.GEBR2[)are used on
processors that do not compute _-TRSM and asynchronous communications are used to send (Lgg, L1¢)
during _-TRSMon processors that compute it.

Therefore, the single block Lo must be broadcast on the current processor row to perform _-TRSMBut it
takes less time than broadcasting (Lgo, L1o)-

This solution seems interesting since we gain at each step i of factorization the broadcast time of
P, — i — 1 blocks, compared to the original version. But, unfortunately, that gain represents only 1 to 2
percents of total factorization time on the Paragon system. This is due to the number of times this broadcast
is done (only P, — 1 times). Moreover, this deceiving result can be predicted by the complexity analysis.
The sum of broadcasting time for all steps never exceeds 2 percents of total execution time.

B.4.2.2 Rows Pivoting Overlap

It appears that a good speed-up cannot be obtained unless a communication phase is overlapped most
of the time. Thus, it is interesting to overlap the pivoting time since it is executed for each row of the matrix :

“Instead of broadcasting pivot informations and then exchanging rows after the (Ao, A1o)
decomposition (PDGETF2, do it at the same time ”

This means that we can use the DSCALtime of the processors column which decompose (Agg, A1), to
exchange current and real pivot rows using asynchronous communications. Then we use the DGERime to
send asynchronously the pivot informations to the next processor in the processors row. Thus, as soon as
this processor receives pivot informations, it can exchange the rows for pivoting and send the information
to the next processor in the row. And so on, until the last processor on the pseudo-ring receives its data.
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FIG. B.7 — One iteration of optimized PDGETF2routine.

During this step, the block column decomposition continues on the processor column.
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Figure B.7 represents the different steps of these operations for an 64 x 64 matrix distributed on a 4 x 4
grid using a 8 x 8 block size. We explain this example in the following :

— step 1: This is the k" iteration of PDGETF2 The real pivot row has been found on processor 11.
Then, processor 15, that owns the current pivot row k, divides the current pivot by the real pivot and
asynchronously send the whole k" row to processor 11. After, it proceeds with DSCALand after, waits
for the completion of the asynchronous send and receives the real pivot row.

Identically, processor 11 asynchronously sends the whole pivot row to processor 15 and computes the
DSCALat the same time. After completion, it receives the current pivot row.

In the best case, processors 15 and 11 do not need to wait for send completion since the communica-
tion is already over when DSCALends. In fact, a wait state appears with a very large matrix, when
their size reaches memory size limits. In this case, the DSCALtime does not completely overlap the
communication time, since DSCALdomain size decreases each step.

Other processors in the pivot processor column just execute the DSCALroutine.

— step 2: DSCALand pivoting is done. Now, the local sub-matrix must be updated with DGERProces-
sors 15 and 11 use this time to send the pivot information to their right neighbor on a pseudo-ring
made from the processors row. In the figure B.7, a pseudo-ring is (12, 13, 14, 15), and the right neighbor
of 15is 12.

Processors 12 and 8 are just waiting for pivot information using a blocking receive.

— step 3 : processors 12 and 8 have just received the pivot information. They can now exchange the k"
row and the pivot row, and send the pivot informations to their right neighbor. Meanwhile, processors
in the pivot column continue the decomposition, finding the pivot and its position, broadcasting the
local pivot row, ...

— step 4:asinstep 1, DSCALis overlapped by an asynchronous exchange of current and real pivot row.
But now, processors 13 and 9 are working, exchanging rows, instead of waiting for the completion of
PDGETF2o work.

- step 5:asin step 2, but with two more processors working.

The impact of this optimization is clearly shown on Figure B.8. On the top of the figure, we can see
that processors 1 and 3 are completely idle during the non-optimized PDGETF2execution. After, there is
a communication phase to exchange the pivot row. On the bottom of the figure, processors 1 and 3 are no
more idle : they are receiving the pivot information and exchanging rows during the optimized PDGETF2
execution. Thus, there are no more communication post-phase. They are overlapped by PDGETF2

B.4.3 Experimental Results

All experimental results have been produced on two Paragon systems and a SP2 system, with various
grid size. The two Paragon (ORNL, Tennessee USA, and Lyon, France) have not the same operating system
and it appeared that it leads to different experimental results.There are four different grid sizes:4 x 4,6 x 5
(Lyon), 8 x 8, and 16 x 16 (ORNL). The 16 processors SP@ system is located at the LaBRI (Bordeaux, France).

All the results have been successfully run with the test driver included in the ScaLAPACK LU factoriza-
tion package in order to test the correctness of the optimizations. This driver completes the LU factorization
on a matrix A and then solves the system LUz = B. It also provides different possibilities to vary the execu-
tion parameters such as block size, number of processors, number of columns of the right-hand-side (RHS)
matrix B, ...

The results on Paragon systems are shown on Figures B.9, B.10, B.11 and B.12. The IBM SP2 results are
on Figures B.14 and B.13.

Figure B.9 shows a comparison between optimized and non-optimized results for 16 x 16 grid. The op-
timized version grows faster (in Mflops) than the non-optimized, before becoming almost parallel. Indeed,
the optimization works better for small matrix sizes (< 375 x P, with P,, the number of processor columns)
because the pivoting communications are all executed during PDGETF2 After this limit, the pivoting time
becomes more important and communications cannot be completely overlapped by the PDGETFZxecution
time. This is confirmed by the complexity analysis. The Figure B.10 shows the predicted and the experimen-
tal gain for a 4 x 4 grid. For each matrix size, the predicted gain is given by the minimum of the total time
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of PDGETF2and the total communication time for pivoting.

Figure B.11 shows the gain in percents over non-optimized version for 8 x 8 and 16 x 16 grids. It can
reach 15% for small matrix sizes, and stay above 4% for the largest matrix size that can be allocated. This
figure confirms that the gain progressively decreases for a matrix size greater than 375 x P..

Figure B.12 is the same as figure B.11 but the x-coordinates are expressed as a function of the sub-matrix
size for a single processor. It shows that the gain does not depend on the total matrix size but only on
the size of the sub-matrix that one processor owns. This is due to the block scattered distribution which
provides a good load balancing.

Figure B.13 shows a comparison between the optimized and non-optimized results for a 3 x 3 grid on
a IBM SP2. For small matrices, the optimized version works much faster than the basic version because
the pivoting is completely overlapped by the PDGETFZ2execution. For large matrices, there is no gain since
the pivoting is hardly overlapped. The gain can even be negative as shown on Figure B.14. In fact, asyn-
chronous communications are often slower than blocking communications, especially for large messages.
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Consequently, the asynchronous pivoting is often slower than in the basic version and it leads to worse
performances when it is hardly overlapped.

B.5 Conclusion and future work

After a description of the LU algorithm in ScaLAPACK, a complete analysis of complexity has been
presented. This theoretical model allows the computation of the optimal block size for the block scattered
decomposition. Thus, it is possible to have the best performance with a simple pre-computation.

The second part has presented two optimizations based on communication / computation overlap. In
the two cases, our aim was to “hide” the time of some big communication phases. Furthermore, it allows to
reduce the idle time of some processors that are waiting results from other to continue the execution.

All experimentations have been done on Paragon systems but the methods presented in this paper are
general. Thus, they can be applied to any supercomputer.
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Meanwhile, some hints can be given as future work :

— All the updates have been done using Paragon system calls syntax because asynchronous BLACS do
not exist. Consequently, our code is not fully portable. But the modifications are simple enough to be
rewritten on any supercomputer.It will soon be ported on a CRAY T3D.

— The gain decreases as the matrix size grows : the PDGETF2time becomes not big enough to overlap
the communications due to pivoting. Thus, another routine could be used to overlap more communi-
cations (like DGEMM

— The optimal block size computation is also interesting as input for parallel compilers because it gives
the best data distribution for a given matrix size, and number of processors. It would be interesting
to include such a computation in an HPF compiler.
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C.1 Introduction

Parallel distributed memory machines improve performances and memory capacity but their use adds
an overhead due to the communications. To obtain programs that perform and scale well, this overhead
must be hidden. Several solutions exist. The choice of a good data distribution is the first step that can
be done to lower the number and the size of communications. Depending of the dependences within the
code, asynchronous communications can be used to overlap computations and communications. The call
to the communication routine (send or receive) will be put as soon as possible in the code. A wait routine
will then be used to check for the completion of the communication. Unfortunately, this is not always legal
due to the dependences between computations and communications. Pipeline schemes are also sometimes
found like the one on Figure C.1 (A). There is a sequentiality within the code, and the total execution time
is higher than the sequential one because of the overhead of the communications. One first solution is to
start the communications as soon as possible, i.e. as soon as one processor has computed one data; this
is called a fine-grain pipeline ((B) on Figure C.1). This solution adds an higher overhead because of the
communication startup time. A trade-off has to be found which minimizes the execution time. This is a
coarse grain pipeline ((C) on Figure C.1).
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) () © Tcompy Communications and Computations Tcompg
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F1G. C.1-Overlap of communications using a pipe- FIG. C.2 - Communication/Computation Overlap.
line method.

The linear case is an easy one [4]. This is no longer the case as soon as the complexity of the computa-
tions and communications is not a linear function of the packet size. The aim of this paper is to present a
library which can be used to improve pipeline computations in the general case. This library, called OPIUM
(Optimal Packet slze compUtation Methods) will be used in another library which implements coarse grain
pipelines, the LOCCS 2 [19, 6].

Some previous studies exist, especially around the compilation of data-parallel languages like High Per-
formance Fortran. The pipelining of computation is a classical optimization of such codes [35, 1]. The linear
case from which this study has started is described in [4]. The results are also used within the LOCCS li-
brary. In [8], the optimal size of packets is computed for general DOACROSS loop nests. The optimizations
of the Fortran D compiler are presented in [35]. Here again, only the simple cases that arise in the compila-
tion of simple loop nests are given. The author admits that a more accurate evaluation of the optimal size
of packets should be given to get the best performances. Finally in [34], the case of a loop nest with two
loops is presented on a network of workstations, using a computation of the optimal size done at run-time,
which allows some kind of load-balancing.

In the general case presented in this paper, the computation of the optimal grain size is no longer trivial.
It can require complicated methods and a very accurate model to obtain correct results; a library is neces-
sary to compute the optimal size without a knowledge of the methods, to do run-time optimizations, to
avoid to re-compute the size if it is not necessary, and to include this kind of optimization in a data-parallel
compiler.

The rest of the paper is organized as follows : the section 2 introduces the problem formulation and the
theoretical model. In section 3, we describe experiments on the Intel Paragon, based on the OPIUM library,

2Low Overhead Communication and Computation Subroutines.
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including performance results and analysis. Then we conclude with remarks on the benefits of this study
and on our future work.

C.2 Computation/Comm unication Overlap

C.2.1 Problem formulation and theoretical model

In this section, we first describe a theoretical model for the overlap of communications by computations.
It will be used as the reference model until the end of the paper. Then, the way to resolve this model is
presented and illustrated with some examples. Finally, a method to avoid the re-computation of the optimal
packet sizes as far as possible is described.

Let L be the Amount of Data to be Pipelined (ADP). We split the data to be sent in u packets of size v
(see Figure C.2). Moreover, in the following, vop: denotes the Optimal Packet Size (OPS).

DEFINITION 1 The “forward computation time” denotes the time spent in the forward computation on a packet
of size v. It can be defined by

Tcompa(v,L) = Ra(L) fa(v) Ta  where
— R4(L) is the forward complexity constants that may depend on the ADP,

— fa(v) is the complexity function of the forward computation implementation,
— and T4 denotes the elementary forward computation time.

DEFINITION 2 In the same way, the “backward computation time” denotes the time spent in the backward
computation on a packet of size v with

Tcompgp(v,L) = Rp(L) fB(v) 7B.

DEFINITION 3 In the following, the notation 0(fa(v))/0(fs(v)) will be used to represent a pipeline algorithm
with a “forward” complexity growing as 0(fa(v)) and a “backward” complexity growing as 0(fs(v)).

Example 1

Let us study the column LU factorization. A column cyclic distribution is used to balance the computa-
tion load all over the execution [9]. With this distribution, we can extract three phases for each factorization
step

— the “local scale” : the processor holding the pivot column of the current step computes its contribution,

and sends it to the other processors,

— the “local update” : the same processor updates its local columns,

— the “remote update” : the other processors receive the contribution, and update their columns.

We clearly have a pipeline scheme. The “local change” must be in the “forward computation” and the
“remote update” is the “backward computation”. The “local update” is put in the “forward computation”
to well balance the “forward” and the “backward” computations such as we can hope to obtain an optimal
overlap gain. For this implementation, the complexities of the “forward” and “backward” computations
are f(A v), where A represents the number of local columns to update. It is important to notice that these
complexities depend on the implementation of the pipeline and on the data distribution. The column LU
factorization is typically a 6(v)/0(v?) algorithm, whereas we have a §(v)/6(v) pipelined implementation.

DEFINITION 4 Tcomm(v) denotes the time spent to send a packet of size v.

In general, the expression of Tcomm(v) depends on the communication scheme (broadcast, all-to-all, . . .), and
on the computer architecture. In the following we will consider a linear communication model T comm(v) = S+vT
where (3 is the startup time and T the per-word transfer time.
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PROPOSITION 1
The OPS computation problem can be rewritten into the minimization problem of

L
Tecompa(v,L) + - Tecomm(v) + Tcompg(v, L) (C.1)
Tcompa(v, L) < Tcomm(v)
under the constraints Tcompg(v, L) < Tcomm(v) (C.2)
1<v<L

Proof See [5]. O If the computation time is always greater than the communication time then we split the

ADP with the minimal packet size and thus v, = 1.
We now want to solve the reference model. There are three steps :

1. First we compute the extremum v,;, of (C.1),

2. then we look for the validity domain of the constraints ; we compute v, the highest packet size which
verify the constraints (C.2),

3. and finally we deduce the optimal size v,;.

e We focus in the following on polynomial complexity functions. If the constraints are true then vy, is
the solution of 2 Ttotal(v, L) = 0.

Tcompa(v) = Rav™ 74
LEMMA 1 Consider that  Tcompg(v) = Rpv*8 78 withas >1,ap > 1.
Tcomm(v)=p+vT

Vmin 1S the unique solution of : g Ra v®*4~1 74 + ap Rpv*®~! 75 — l,:._zﬁ =0.

Proof See [5]. O

Remark 1 For the most usual complexity functions that are over-linear and communication types, we can
verify that the second order derivate of T'total(v) is always positive on the validity domain of ». For all
these cases, the problem admits one and only one solution.

e Now that we have the minimum of equation (C.1), we must take care of the constraints. An other ap-
proach to optimize the overlap of computations by communications consists in finding, when possible, the
packet size such that the communication time for one packet balances exactly the computation time for this
packet [7]. As the “forward” and “backward” computations play a symmetrical part in the minimization of
equation (C.1), we can assume that T'compa > Tcompp. Then the constraint balance is given by

Tcompa(v,L) = Tcomm(v). (C.3)
Let vpq; be the solution of this equation. Often, v4; is not the OPS; for a packet size upper than v, we can
rewrite the expression of T'total(v, L) as

L
Ttotal(v, L) = Tcompa(v,L) + > Tecompa(v,L) + Tcompg(v, L). (C4)

If Tcompa (v, L) is over-linear on v then T'total(v, L) increases with v and vy, minimizes T'total(v, L) for
v > Vpgr- Otherwise, we have to find vy, which minimizes (C.4).

e Finally, the following proposition leads to the computation of vp;.

PROPOSITION 2
If 1 < vpgr < L then two cases are possible :
— if Upar < Vmin then the constraint occurs and vope = Vpqy,
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— otherwise the constraint does not occur and v,p; = Vigin.

The end of this section is dedicated to some examples.

Tcompa(v) = RAvTa
LEMMA 2 Consider that { Tcompg(v) = Rpv s

Tcomm(v)=8+vT
Two cases are possible :

- lfRATA —TSOthenl/opt:”%.

—ifRa71a —7 >0 then

. B(Ra Ta+RB TB) — Lp
- if L < =g then vop = \/%’

— else Vopt = Rara—r:

Proof See [5]. O

Remark 2 In the case of the column LU factorization, R4 and Rp depend on the ADP (R4 = Rp =

ﬁROC within one, where NPROC is the number of processors). S0 vpin = 4/ % and the optimal
packet size is independent of the ADP.

Tcompa(v) = Rav? 7a
LEMMA 3 Consider that { Tcompp(v) = Rpv 1B
Tcomm(v)=8+vT

The validity domain for the OPS is v € |0, TV RATA B

2RA TA

]and there is one and only one real positive solution for

Vmin among the 3 Jordan solutions :

_ 3/—q+0 3/—q=0 A 2
n=4—-35 Ty 3 p=—4

3
— 3/—q+d - 3/—=q=6 2 A ; _2A
vy = ‘12 ']+1/qT'J -4 with (1_73—B2
2 4p°+27q
3/—q+6 2, 3/—q=6 : A 0% =
vz = L7+ =i-3 2

Proof See [5] O

Tcompa(v) = Ra In(v) 7a
LEMMA 4 Consider that { Tcompp(v) = Rp In(v) 78
Tecomm(v)=p+vT

LB

then Vmin = f 2 fara

The proof is straightforward. However, in order to compute v;,;, we have to solve Rq In(v) 74 = +vT
and we cannot explicitly extract the solution. The same problem occurs when extracting vy,;, with, for
instance, a (v In(v))/6(v In(v)) pipeline scheme or a §(v")/8(v™) pipeline scheme with n,m > 4.

We can see with this last examples that it is not always possible to explicitly extract the OPS. For more
complex computations or for non linear communication types, we will have to use numerical schemes such
as Newton or Brent methods.
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C.2.2 Avoid re-computation of optimal packet sizes

In practical applications, pipeline are chained and only the ADP differs. So it is not always useful to
re-compute the OPS for each pipeline. In fact, it is sometimes possible to find the gap between problem
sizes such that optimal packet sizes are equal.

PROPOSITION 3
Assuming that the analytic expression of v, (L) is known, the gap of problem sizes corresponding to equal optimal
packet sizes is the largest integer l,,,,, over all [ > 0 such that

[Vopt (L +1) — vopt(L)| < 1. (C.5)

LEMMA 5 If v, (L) can be rewritten into C LY, with C > 0 and vy > 1,then l,,q, = (LY + 1/0)1/7 — L.

Proof See [5]. O

Remark 3 We can formulate three remarks :

— Consider the linear example (lemma 2). We have C' = ,/m and v = 1/2, and S0 lypee =

Ra TA'ERB TE 4 9 L (Ra TAﬂ+RB TB) )
— For the column LU factorization (see example (1)), the optimal size is independent of the ADP, so we

compute v,,; only one time.
— If the analytic expression of v, can be explicitly extract but cannot be rewritten into C' L” (see for
instance lemma 3), the [,,,4, value will be computed by a numerical scheme.

C.3 Experiments

In this section, we discuss the experiments done to evaluate the validity of the theoretical model and
the benefits of the overlap of communications by computations with the optimal packet size. Our experi-
ments are based on the LOCCS library [4, 6] which brings some useful overlap management primitives.
The performance measures are made on a 32 nodes Intel Paragon.

The main example is the column LU factorization (see example 1) with a good balance between the
“forward” and the “backward” computations. We use both the general and linear specific OPIUM methods.
A description of the OPIUM library is given in [5].

The optimal packet size predicted and computed with our model is confirmed by the experimental mea-
sures ; on Figure C.3, the vertical line corresponds to the OPS computed by the OPIUM routine. Moreover,
according to the theory, this size is constant for each pipeline of the factorization until the constraint occurs.
So it is computed only one time.

On Figure C.4, we see that the more important is the ADP, the more efficient is the communica-
tion/computation overlap.

The gain brought by the overlap decreases when the number of processors increases (see Figure C.5).
This is due to the fact that local computations, for each processor, are not large enough to have an effi-
cient overlap . But we can see that the ratio between the two algorithms (with or without overlap) is quite
independent of the number of processors which shows the scalability of this optimization.

The gain curve (see Figure C.6) shows that for a large enough matrix, we quickly reach a good overlap
(the factorization time with overlap is reduced by half, compared to the factorization without overlap) and
we also see that, whatever the matrix size may be, the overhead time generated by the management of the
overlap is negligible. We can remark that for less than 100 data, no splitting is done (vop; > L).

We made some experiments with pipeline schemes for different “forward” and “backward” complexi-
ties to compare the generic method with specifics pipeline methods. The OPS are identical, and if the ADP
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increases slowly, the overhead due to the iterative scheme of the generic method is negligible. Indeed, the
pre-computed OPS leads to fewer iterations.

C.4 Conclusion and future works

In this paper, we have presented and experimented a general method for the computation of the optimal
packet size in the framework of the overlapping communications/computations. We are currently looking
into the following studies. First we will try to tackle irregular problems such as sparse Cholesky factori-
zation; the aim is to compute, in an adaptive scheme, the optimal packet size. Second, we want to adjust
the model so that it takes care of BLAS optimizations; indeed, the gains obtained on the LU factorization
using a column algorithm may not be obtained for a block algorithm like the one used in ScaLAPACK [25].
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There is a trade-off to be found between the computation grain size and the pipeline optimization. Finally,
we wish to integrate those techniques into data parallel compilers like High Performance Fortran ones.
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In the medical field, volume rendering provides good quality 3D visualizations but it is still not interac-
tive enough for a day-to-day practice. The most efficient sequential algorithm is the Shear-Warp algorithm.
It renders up to 10 images per second for a small dataset. The goal of this paper is to present an efficient pa-
rallel implementation of the Shear-Warp algorithm for a distributed memory architecture, a cluster of PCs
connected with a high speed network. This highly irregular algorithm led us to implement a dynamic load
balancing algorithm. Furthermore, to reduce the overhead due to data redistribution, we overlap commu-
nications with computations using MPI’s asynchronous communications. Using a good load-balancing and
communication overlap, our implementation generates real-time 3D medical images with a good quality
and a high resolution.
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D.1 Introduction and motiv ations

Direct volume rendering techniques are effective tools for exploring 3D scalar data. Unlike surface-
rendering methods, direct volume-rendering methods can be used to visualize 3D scalar data without
converting to intermediate geometric primitives. By assigning appropriate colors and opacities to the scalar
data, one can render objects semi-transparently to expand the amount of 3D information available at a fixed
position. Volume-rendered images can also be superimposed upon surface-oriented icons or textures thus
allowing simultaneous scalar and vector field composite visualizations.

Representing a surface contained within a volumetric data set using geometric primitives can be useful
in many applications, however there are several main drawbacks to this approach. First, geometric pri-
mitives can only approximate surfaces contained within the original data. Adequate approximations may
require an excessive amount of geometric primitives. Therefore, a trade-off must be made between accu-
racy and space requirements. Second, since only a surface representation is used, much of the information
contained within the data is lost during the rendering process.

Real-time rendering is an important goal in visualization applications. Most of these applications require
the generation of a sequence of images for different orientations of the volume. Consequently, real-time
rendering should enable a continuous visualization of the volume as its orientation changes. Moreover, hi-
gher and higher resolution datasets combined with the high computational cost of direct volume rendering
makes it difficult, if not impossible, for sequential implementations to deliver the required level of perfor-
mance. Therefore, such applications have been parallelized to keep a good image quality while getting a
real-time visualization. Lacroute and Levoy [14] developed the Shear-Warp algorithm that exploits cohe-
rence in the volume and image space. This algorithm is currently acknowledged to be the fastest sequential
volume rendering algorithm.

The goal of this paper is to present an efficient parallel implementation of the Shear-Warp algorithm
for a distributed memory architecture, a cluster of PCs connected with a high-speed network and using a
light weight and fast communication layer. This new parallel implementation is load balanced and overlaps
communication with computation using MPI asynchronous communications.

This paper is organized as follows : in the next section, we describe and analyze the sequential version
of the Shear-Warp algorithm. The third section describes previous parallelizations of this algorithm and
our approach. It exhibits the main problems associated with the parallel implementation. It focuses on
architecture, task partition and communications patterns. We also present a new dynamic load-balancing
algorithm for the Shear-Warp algorithm tuned to interactivity. In order to improve the scalability of the
algorithm, we discuss the possibility of implementing communication overlap in this algorithm. In a last
section and before a conclusion, an evaluation of the communication overlap features of MPI is presented
and we give our experimental results in terms of load-balancing and scalability.

D.2 Shear-Warp algorithm

Volume rendering [11] is the process of creating a 2D image directly from 3D volumetric data so that
no information contained within the data is lost during the rendering process. For example, in computed
tomography, scanned data useful informations are not only contained on the surfaces but also within the
data. Therefore, it must have a volumetric representation, and must be displayed using volume rendering
techniques. Lacroute and Levoy described a fast volume rendering algorithm called the Shear-Warp facto-
rization [14]. It is based on an algorithm that factors the viewing transformation into a 3D shear (parallel to
the data slices), a projection to form an intermediate but distorted image, and finally a 2D warp to form an
undistorted final image. The Shear-Warp factorization has the property that rows of voxels in the volume
are aligned with rows of pixels in the intermediate image. Consequently, a scanline-based algorithm has
been constructed that traverses the volume and the intermediate image synchronously, taking advantage of
the spatial coherence present in both volume and image. An established acceleration technique for volume
rendering is to exploit coherence in the volume by using a spatial data structure. For a given visualization
data set, there are clusters of voxels that contribute useful informations to the image and other clusters
that are irrelevant. The purpose of a spatial data structure is to encode this type of coherence getting rid
of irrelevant voxels. Rendering algorithms use data structures like octrees, pyramids, run-lengths encoding
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(RLE) to skip transparent voxels rapidly. Lacroute and Levoy optimized the original algorithm by using
spatial data structures based on run-length encoding for both the volume and the image and also taking
advantage of early ray termination [13]. The RLE data structure is a sparse data structure that contains only
non-transparent voxels for the object and non-saturated pixels for the image. Using a RLE, we skip empty
voxels and saturated pixels. MRI (Magnetic Resonance Imaging) or CT (Computer Tomography) images
contain up to 70 percent of transparent voxels. Consequently, using the RLE data-structure combined with
early ray termination, the Shear-Warp algorithm developed by Lacroute is ten times faster than the origi-
nal one [12]. An implementation running on an SGI Indigo workstation renders a 256° voxel data set in
one second. This algorithm is based on three main steps : the computation of the shading lookup table,
the projection of the volume data into the intermediate image, and finally the warping of the intermediate
image. The projection of the volume data into the intermediate image dominates the cost of the sequential
algorithm. It takes over 80% of the total amount of time for a whole execution [1]. Therefore, in this paper
we focus on the compositing step which is the projection of the volume data into the intermediate image.
The use of an RLE data-structure implies that scanlines may have widely different amount of data associa-
ted with them. Data repartitions in both object and image are highly irregular. They depend on the scene
and the viewpoint. For instance, Figure D.1 illustrates how the data repartition in the intermediate image
depends on the viewpoint. The default viewpoint is the zero-degree rotation angle. We compare the data

distribution of respectively 5 and 20-degree rotation angles to the default viewpoint. We can notice that the
bigger the rotation is, the more different the data repartition is.
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FIG. D.1 - Data repartition in the intermediate image (5-deg. and 20-deg. rotation angles).

The Shear-Warp algorithm leads to a highly irregular application. Accordingly, in the parallel algorithm,
computations and communications are very irregular as well. Thus its dynamic load-balancing and the
minimization of its communications have to be carefully optimized.

D.3 Parallel algorithm

In this section, we exhibit the main problems associated with the parallel implementation of the Shear-
Warp algorithm. The Shear-Warp algorithm augmented with early ray termination and run-length enco-
ding yields to an excellent per-frame sequential rendering times. It forms the basis of our parallel for-

mulation. The critical issues in any parallel algorithm are concurrency, minimization of communication
overhead, and a good load-balancing among processors.
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D.3.1 Related work

Some authors have already proposed parallel formulations of this algorithm for both shared and distri-
buted memory architectures. To get real-time performance, both Lacroute [13] and then Jiang and Singh [10]
parallelized the Shear-Warp algorithm on a 16-processor SMP, the SGI Challenge. Unlike distributed me-
mory architectures, this architecture supports fine-grain and low-latency communications adapted to the
irregular communication and computation patterns of the Shear-Warp algorithm. They render a 256° voxel
data set at over 10 frames per second. Amin et al. [1] have implemented the Shear-Warp algorithm for a
distributed memory architecture. With a 128-processor TMC CMS5, they could render a 2563 voxel data set
at 12 frames per second. It is comparable to the results obtained on the 16-processor shared memory archi-
tecture. However, they restricted the utilization of the Shear-Warp algorithm by allowing only one-degree
rotations to change the viewpoint. Despite of this restriction, their algorithm is not scalable : the speedup
is only equal to 30 for 128 processors. The two general types of task partitions in parallel volume rendering
algorithms are object partitions and image partitions. In an object partition, each processor gets a specific
subset of the volume data to re-sample and to composite. The partial results from each processor must then
be composited together to form the image. In contrast, using an image partition, each processor has to com-
pute a specific portion of the image. Each image pixel is computed only by one processor, but the volume
data has to be moved to different processors as the viewing transformation changes. It is very important
not to limit the size of the data volume. In the medical field, standard volumes are composed of 5123 voxels,
which lead to at least 135 Mbytes of raw data corresponding to several hundreds of Mbytes for the classified
data. Thus, we chose to distribute the data on every processor because the replication for such volumes is
impossible on standard machines. All existing implementations have designed their parallelization using
an image partition that takes full advantage of the optimizations of the rendering algorithm. Moreover, for
a shared memory architecture, data movement is less significant. The partitioned image is the intermediate
image created during the shear step. The unit of work can be individual pixels, scanlines of pixels, or rectan-
gular pixels. In [13], it is shown that the best shape is scanlines of pixels because it minimizes the overhead
due to decoding the run-length data structure. It also maximizes the spatial locality both in the intermediate
image space and object space. Given that the fundamental unit of work is a group of contiguous scanlines
of the intermediate image, minimizing load-imbalances leaves three options : a static contiguous partition,
a static interleaved partition and a dynamic partition. For a shared memory architecture, Lacroute chose
to use a distributed task queue and a dynamic stealing. This solution is too expensive for a distributed
memory architecture. It generates a prohibitive communication overhead. Consequently, for such an archi-
tecture, Amin et al. determined heuristics based on adaptative load-balancing scheme. But because their
utilization restriction that considers only one-degree rotations they finally conclude that they only needed
a static load balancing.

D.3.2 Our approach

Our approach is to implement the parallel version of Shear-Warp algorithm on a distributed memory
architecture (a cluster of PCs interconnected with a high-speed Myrinet network from Myricom) because
of its good scalability and low cost.

We implemented the overall algorithm but we only focused on the data distribution and redistribution
and the composition that are written in italic in Figure D.2 (that takes most of the computation time).

On the one hand, one of our major goals is to achieve real-time performances with higher resolution data
sets (particularly 5123). On the other hand, we believe that it is important not to restrict the user utilization
and to allow him to change arbitrarily the viewpoint. Thus, our new implementation proposes a dynamic
load-balancing that does not depend on the previous rendering.

D.3.2.1 Data distrib ution

Because of the distributed memory architecture, we had to determine an explicit data distribution (and
redistribution) that minimizes communication but keeps a good load-balancing. Explicit data distribution
is a difficult problem when an image partition is used because the portion of the volume required by a par-
ticular processor depends on the viewpoint. To distribute data volume in an intermediate image partition
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Procedure Render()

Initial Distribution()

Foreac h viewpoint do
Computation of a part of the shading lookup table (LUT)
Multidistribution of the shading LUT
Foreac h voxels’ slices from front to back do

If I own the data
Composite(data, part_image)

EndFor
image = Warp(part_.image)
Gather(image, root)

If p == root
Display(image)
Personalized-all2all(volume)
EndFor
End
FI1G. D.2 - Overall algorithm
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FIG. D.3 — Volume distribution in an image partition.

the volume is first sheared and then distributed by slices orthogonal to the rays. Each processor can com-
pute its portion of the intermediate image through its assigned volume segment. The resulting intermediate
images on different processors are disjoint and can be independently warped. Figure D.3 shows a simple
intermediate image partition with 4 processors. The corresponding sheared volume, made up of 5 slices, is
partitioned as illustrated on the figure : processor 3 owns a few scanlines in the first slice, processor 2 owns
scanlines in every slice, ...

The main overhead of this algorithm results from communications of volume data when the volume is
sheared. The generated communications are shown in black in Figure D.4. Every processor receives data
corresponding to the shaded scanlines from its neighbor processors except the first and the last ones.
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FIG. D.4 — Data received respectively from previous and next processors.

D.3.2.2 Communication patterns

In our parallel Shear-Warp algorithm, we need two types of communications : a gather of partial images
into the final image, and a personalized all-to-all communication for the data redistribution when the view-
point has changed. We implemented the personalized all-to-all communication in p — 1 steps, where p is
the number of processors, as follows : at each step each processor sends data to a step-far processor in
the increasing processor number and receives data from a step-far processor in the decreasing processor
number.

D.4 Optimizations

In this section, we describe our load-balancing and communication optimizations in our parallel version
of the Shear-Warp algorithm.

D.4.1 Dynamic Load-Balancing

Section 2 shown that data repartitions in both object and scene are highly irregular and depend on the
scene and the viewpoint (see Figure D.1). Moreover static load-balancing gave us poor results as detailed
in the next section. Those are the reasons why the requirement of an arbitrary rotation of the cube of voxels
implies that we have to implement a dynamic load-balancing mechanism depending on the viewpoint. In
an image partition, every processor has to compute a specific portion of the image. This portion of image
results from the projection of the volume data into this portion of image. As explained in section 3.1, the
appropriate partitioning should be 1D linear to take advantage of the RLE data structures in both object and
image. Therefore, a naive partitioning of the intermediate image that assigns an equal portion of contiguous
scanlines to each processor as described in Figure D.3 yields to a bad load-balancing. We also experimented
blocks of scanlines interleaving as in [15]. As a matter of fact, when the size of the blocks is one, this partitio-
ning achieves good load-balancing. But in this case, data locality in the object becomes poor and yields to a
very bad computation time. Furthermore, it is impossible to determine in a static way the accurate amount
of voxels needed to generate this portion since it depends on the viewpoint arbitrarily chosen by the user.

Consequently, we used a derivation of the elastic load-balancing algorithm given in [16] to determine
the load and to get a good load-balancing accordingly. This algorithm consists in computing a local par-
tial load for each processor. Then, each processor broadcasts its partial value and adds its value with the
ones received. At this moment, every processor knows the global load. By dividing this global load by the
number of processors, each processor finds the elementary load. Then every processor has to get the data
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necessary to its computation. This elastic algorithm allows us to compute a linear partitioning of the inter-
mediate image. Each processor will compute a block of scanlines whose size ensures equal load among the
processors. This way, there is no need to interleave blocks and the data locality both in object and image
reenforced by the RLE data structures is preserved.

In the Shear-Warp algorithm, every processor computes then an array containing its local contribution
to each line of the intermediate image. This array is then broadcast. Each processor adds the arrays recei-
ved with its own. The resulting array contains the computational load for each line of the intermediate
image. They can then obtain the global load. By linearly distributing the intermediate image, processors
can balance the load over the processors.

D.4.2 Overlapping comm unication with computation

Our second optimization is the overlap of communications by computations using non-blocking com-
munications. A communication call is said non-blocking if it may return before the operation completes. A
communication is said asynchronous if its execution proceeds as the same time as the execution of the pro-
gram. Both kind of routines allow the program to continue its execution but prevent the user from re-using
resources (such as buffers) specified in the call. However, a non-blocking communication is not necessarily
asynchronous. The data to be communicated can be copied to a temporary buffer and the communication
itself can be delayed. If the architecture of the machine has separate communication and computation pro-
cessors, the communication can be started by the computation processors which gives in turn the task of
sending the data over the network to the communication processor.

Several papers have presented some ways to hide communication latency [2] or to use asynchronous
communications to improve the implementation of parallel algorithms [5, 7]. In [15], the authors present the
parallelization of a cell-projection volume rendering algorithm that uses asynchronous communications.
In [6], a good presentation of communication latency hiding is presented, including active messages [8].

In order to reduce the overhead due to data redistribution, we studied the possibility of introducing
communication overlap in the compositing phase of the Shear-Warp algorithm. Because of the irregularity
of the application, this presents a considerable challenge. In addition to the irregular communication and
computation patterns of the Shear-Warp algorithm, we had to deal with communication layers.

So far, every communication generated by the data redistribution is done before the volume composi-
tion. Consequently it is possible to overlap the communication of slice k + 1 with the composition of slice k.
The first overlap optimization consists in starting the computation of a slice as soon as every processor sent
its corresponding data. The second overlap optimization waits for a processor to send its data and begins
immediately its computation corresponding to the received part of slice.

Figure D.5 shows an example of communication and computation pattern with 4 processors and 3 slices.
Without overlap, the processor waits for each slice for every processor’s data before starting the compu-
tation. It is represented by case a. The first overlap step (case b) consists in starting the computation of a
slice as soon as every processor sent its corresponding data. Then, in the figure, we have improved the total
execution time of A. The second overlap step (case c) waits for a processor to send its data and begins imme-
diately its computation corresponding to the received part of slice. Then, in the figure, we have improved
the total execution time of B (B > A).

D.5 Experimental results

Our target platform is the LHPC PoPC which is a cluster of 8 PowerPC 604e clocked at 200 Mhz and
running Linux. Each workstation is connected with a Myricom/PCI network interface card [3] on the PCI
Bus. The interface card contains a host DMA engine, which moves data from host main memory to the
SRAM on the network interface, a network DMA engine, which moves the data from the SRAM into the
network, and a LANai processor, which executes the low-level messaging protocol and is responsible for
both coordinating the actions of the DMA engines and interfacing with the host.

The basic communication layer is BIP (Basic Interface for Parallelism) which is an optimized communi-
cation layer for the Myrinet network [17]. There is also an implementation of MPI on top of it. BIP delivers
the maximal performance achievable by the hardware to the application.
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FIG. D.5 — Two possible solutions to overlap communication with computation.

D.5.1 Communication overlap in MPI

The implementations of the Message Passing Interface (MPI) [18] are now available on every kind of
platforms, from SMP (Symmetric Multi Processor) to clusters of PCs. This ensures a very good portability.
However the use of distributed memory machines or network of workstations adds an overhead due to
the communications. To hide this overhead, non-blocking communications can be used to overlap com-
putations and communications. However the assumption that the communication layer provides a “real”
overlap and an asynchronous execution of the communication is not obvious as previously stated in [9].

Using BIP native primitives, it is theoretically possible to overlap communications and computations.
We executed a test program with both blocking and non-blocking communications on two processors.

The current MPI-BIP implementation does not actually provide any overlap (see Figure D.7). The main
restriction comes from the high interaction between the compute and the network processors. We observe
that the total time of the non-blocking version is close to the total time of the blocking one. We executed the
same test program as with BIP native primitives (see Figure D.6). Results are even worse in a non-blocking
version probably because of overhead of splitting the communication in two calls.

To get some overlap with the MPI-BIP interface, we need to interrupt the user’s program to switch to
communication handling. The cost of the interruption must be low enough so that the improvement due
to overlap is not lost. Such a design could be done by using hardware interrupts, and the use of signal
handles inside the MPI-BIP implementation. But an implementation of this strategy can be done by mo-
difying the application to periodically check the network status, to eventually launch the next step of the
communication protocol. To get this effect, we tried to periodically call a “neutral” MPI primitive in the
computation program which has no semantic side-effect, but which will potentially allow the background
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tions with small computations. putation using MPI-BIP.

communication to progress by handling the intermediate events.

For instance, MPI_Iprobe checks whether a message can be received and has no side-effect whereas
MPI_Test consumes the MPI communication request and completes the reception. Figure D.8 gives the
results for two different experiments. In the first experiment, the primitive MPI_lprobe is called in the
external loop. As we can see, there is no communication overlap. In contrast, in the second experiment, the
primitive MPI_Iprobe is called in the internal loop of the computation. In this way, the communication
overlap is total (note that the overhead of calling MPI_Iprobe is insignificant).
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FI1G. D.8 — Calling MPI_Iprobe in the external and internal loop of the computation.

Even if MPI has been designed to allow such an overlap, it may look surprising that in practice MPI
implementations do not always allow to exploit it. We observed the same behavior on other machines and
with other MPI implementations. From our study, we can actually derive a set of conditions that must ful-
fill MPI implementations to actually provide communication overlap. Either it must internally rely on an
interrupt-driven mechanism which allow to interrupt the main computation to handle the protocol proces-
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sing of the communications in the background, or there should be a second processor independent of the
main compute processor, which should be able to deal with this processing. More details are given in [4]
and [9].

D.5.2 Experimental results of the Shear-Warp algorithm

For our experiments, we used sets of slices provided by Lacroute (Volpack distribution). These are CT
scan or MRI scan slices from the Chapel Hill Volume Rendering Test Dataset. Figure D.11 is a volume
rendering example obtained with one of the sets used. This one is especially interesting because it leads to
bad performances when using a naive data distribution.

Figure D.9 compares respectively the workload of each processor for an execution with processors res-
pectively in the case of a static allocation and a dynamic redistribution.
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Using a static allocation, we distribute the slices with a regular block distribution of the lines (see Fi-
gure D.3). Central processors have the whole load. On the contrary, with the dynamic load-balancing algo-
rithm, the data is well balanced. There are some slight variations due to the granularity of the data.

In our parallel implementation, we focused on the compositing step. We first implemented the com-
positing step using blocking MPI primitives. The very bad scalability of this implementation, as shown in
the Figure D.10, is due to data redistribution overhead. Then we added communication overlap. The figure
shows that the implementation using asynchronous communications is almost perfectly scalable. We have
a very good overlap of the communications because of the Myrinet technology and the BIP layer. We never-
theless had to call the MPI_lprobe primitive in the computation to take advantage of the overlap inside our
implementation of MPIL The curves were obtained on a colored high resolution dataset with 5123 voxels.
The total execution time for such a dataset is 1.5 s on 4 processors.

D.6 Conclusion

The first goal of this application is to provide physicians with a good quality and resolution visualization
from medical datasets in real-time with a low-cost distributed memory machine. In this paper, we have
presented an high performance and scalable version of the Shear-Warp algorithm implemented on a cluster
of PCs. Our parallel approach of the Shear-Warp algorithm improves the interactivity of the application
by using an adapted load balancing algorithm and by overlapping communications with computations. It
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then allows the user to get a 3D representation with any viewpoint in real-time. Even with a sparse data-
structure and irregular communication patterns, we are able to get performances that are comparable to
implementations on “classical” parallel machines and at a lower cost. The optimizations presented in this
paper can also be used in other irregular applications, such as linear algebra routines using sparse matrices,
and thus we would like to create a library to overlap communications and computations for this kind of
applications. We would also like to study the same load-balancing on a heterogeneous cluster connecting
multiprocessor boards with a Myrinet network. A mixed algorithm could be developed, connecting the
study of Lacroute with ours.

We have demonstrated that clusters of PCs can be efficiently used even for irregular applications. They
offer a good alternative to higher level machines but we still need some more efficient (and portable) tools
for the development of real world applications. The performance/development time ratio is still in favor
of SMP machines.
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E.1 Introduction

Run-time redistribution of arrays that are distributed in a block-cyclic fashion over a multidimensional
processor grid is a difficult problem that has recently received considerable attention. This interest is mo-
tivated largely by the HPF [12] programming style, in which scientific applications are decomposed into
phases. At each phase, there is an optimal distribution of the data arrays onto the processor grid. Typically,
arrays are distributed according to a CYCLIC(r) pattern! along one or several dimensions of the grid. The
best value of the distribution parameter r depends on the characteristics of the algorithmic kernel as well
as on the communication-to-computation ratio of the target machine [5]. Because the optimal value of r
changes from phase to phase and from one machine to another (think of a heterogeneous environment),
run-time redistribution turns out to be a critical operation, as stated in [9, 20, 21] (among others).

Basically, we can decompose the redistribution problem into the following two subproblems :

Message generation The array to be redistributed should be efficiently scanned or processed in order to
build up all the messages that are to be exchanged between processors.

Communication scheduling All the messages must be efficiently scheduled so as to minimize communi-
cation overhead. A given processor typically has several messages to send, to all other processors or to
a subset of these. In terms of MPI collective operations [15], we must schedule something similar to an
MPI_ALLTOALL communication, except that each processor may send messages only to a particular
subset of receivers (the subset depending on the sender).

Previous work has concentrated mainly on the first subproblem, message generation. Message gene-
ration makes it possible to build a different message for each pair of processors that must communicate,
thereby guaranteeing a volume-minimal communication phase (each processor sends or receives no more
data than needed). However, the question of how to efficiently schedule the messages has received little
attention. One exception is an interesting paper by Walker and Otto [20] on how to schedule messages in
order to change the array distribution from CYCLIC(r) on a P-processor linear grid to CYCLIC(Kr) on
the same grid. Our aim here is to extend Walker and Otto’s work in order to solve the general redistri-
bution problem, that is, moving from a CYCLIC(r) distribution on a P-processor grid to a CYCLIC(s)
distribution on a Q-processor grid.

The general instance of the redistribution problem turns out to be much more complicated than the
particular case considered by Walker and Otto. However, we provide efficient algorithms and heuristics to
improve the scheduling of the communications induced by the redistribution operation. Our main result
is the following : For any values of the redistribution parameters P, @), r and s, we construct an optimal
schedule, that is, a schedule whose number of communication steps is minimal. A communication step
is defined so that each processor sends/receives at most one message, thereby optimizing the amount of
buffering and minimizing contention on communication ports. The construction of such an optimal sche-
dule relies on graph-theoretic techniques such as the edge coloring number of bipartite graphs. We delay
the precise (mathematical) formulation of our results until Section E.4 because we need several definitions
beforehand.

Without loss of generality, we focus on one-dimensional redistribution problems in this article. Although
we usually deal with multidimensional arrays in high-performance computing, the problem reduces to the
“tensor product” of the individual dimensions. This is because HPF does not allow more than one loop
variable in an ALIGN directive. Therefore, multidimensional assignments and redistributions are treated as
several independent one-dimensional problem instances.

The rest of this article is organized as follows. In Section E.2 we provide some examples of redistribution
operations to expose the difficulties in scheduling the communications. In Section E.3 we briefly survey the
literature on the redistribution problem, with particular emphasis given to the Walker and Otto paper [20].
In Section E.4 we present our main results. In Section E.5 we report on some MPI experiments that de-
monstrate the usefulness of our results. Finally, in Section E.6, we state some conclusions and future work
directions.

The definition is the following : let an array X [0...M — 1] be distributed according to a block-cyclic distribution CYCLIC(r) onto
a linear grid of P processors. Then element X [i] is mapped onto processor p = |i/r] mod P,0 < p < P — 1. See Section E.4.1 for
further details.
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Notations

The main variables used in the next sections are listed in Table E.1. The abbreviations “N.M.” and
“S/R” are used in a few communication tables. They respectively mean “Number of Messages” and “Sen-
der/Receiver”.

TAB. E.1 — Main notations in the paper.

| variable | definition

The number of processors in the original grid

The number of processors in the target grid

The block factor of the original distribution

The block factor of the target distribution

The array to be redistributed

The (global) size of X

The least common multiple of Pr and Qs

The number of slices of L data elements in array X
The number of steps in the communication schedule
The total communication cost

S EEIGEEENER

E.2 Motivating Examples

Consider an array X[0...M — 1] of size M that is distributed according to a block cyclic distribution CY-
CLIC(r) onto alinear grid of P processors (numbered from p = 0 to p = P — 1). Our goal is to redistribute
X using a CYCLIC(s) distribution on () processors (numbered fromg =0tog=Q — 1).

For simplicity, assume that the size M of X is a multiple of L = lem(Pr, )s), the least common multiple
of Pr and (s : this is because the redistribution pattern repeats after each slice of L elements. Therefore,
assuming an even number of slices in X will enable us (without loss of generality) to avoid discussing side
effects. Let m = M + L be the number of slices.
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Example 2

Consider a first example with P = @ = 16 processors, r = 3, and s = 5. Note that the new grid of
() processors can be identical to, or disjoint of, the original grid of P processors. The actual total number
of processors in use is an unknown value between 16 and 32. All communications are summarized in
Table E.2, which we refer to as a communication grid. Note that we view the source and target processor
grids as disjoint in Table E.2 (even if it may not actually be the case). We see that each source processor
p € P ={0,1,...,P — 1} sends 7 messages and that each processor ¢ € Q = {0,1,...,Q — 1} receives
7 messages, too. Hence there is no need to use a full all-to-all communication scheme that would require
16 steps, with a total of 16 messages to be sent per processor (or more precisely, 15 messages and a local
copy). Rather, we should try to schedule the communication more efficiently. Ideally, we could think of
organizing the redistribution in 7 steps, or communication phases. At each step, 16 messages would be
exchanged, involving 16 disjoint pairs of processors. This would be perfect for one-port communication
machines, where each processor can send and/or receive at most one message at a time.

TAB. E.2 - Communication grid and communication steps for P = @ = 16, r = 3, and s = 5. Message
lengths are indicated for a vector X of size L = 240.

P=Q=16,r=3,s =5,and L = 240

[S/RJTO0[1[2[3[4[5]6[7[8[9[10][11[12][13]14]15] NM. |

0 [[3b] -] -13]-]-13]-]-lz2]|1g]-l1]2d]-]-] 7
1 2d | 1f | - |1g| 2| - | - |3 | -|-|3b]|-]-1]3]|-]|- 7
2 - |3 | - - | 3| - - |2 |1g| - | 1f |2d]| - - |3 | - 7
3 - |1g|2 | - | - |3| - | -|3]| -] - |3]|-|-]2d]1f 7
4 - - (3| - | - |2|1g| - |1 |2d]| - - |3 | - - | 3a 7
5 [[2e] -] -3 ]| -]-l3]|-]-|3]|-]-l2a]|1]-|1g| 7
6 3¢ | - - |2 |1g| - | If |2d]| - - |3 | - - 3| - - 7
7 - |3 | -] -1]3|-|-|8)|-|-|2d|1| - |1g]| 2| - 7
8 {2 [1g| - |1f|2d| - | - |3 | -] - ]3]|-]|-]3]-]| 7
9 - - |3 | - |- |3] - - l2d | 1| - |1g| 2| - - | 3¢ 7
10 [[1g| - [1f]2d| -] - |3 -]- 3] -]-l3]|-]|-2]| 7
11 3a | - - | 3| - - |2d | 1f| - |1g | 2| - - | 3| - - 7
12 1f | 2d | - - | 3| - - |3 - - | 3| - - | 2 | 1g| - 7
13 - |8 | - | -|2d| 1| - |1g|2 | - |- |3b|-|-]3]| - 7
14 - -3 | - | - |3]| - - |3 | - - |2 | 1g| - | 1f | 2d 7
15 - | -|2d| 1| - |1g| 2| - | -|3a]|-|-|3|-]|-1]3b 7
NM\|\7 |7 \|\7\|\7|\7\|\7\7|\7\7 |7 |\7 |7 |7 |7 |77

Note that we may ask something more : we can try to organize the steps in such a way that at each
step, the 8 involved pairs of processors exchange a message of the same length. This approach is of interest
because the cost of a step is likely to be dictated by the length of the longest message exchanged during the
step. Note that message lengths may or may not vary significantly. The numbers in Table E.2 vary from 1
to 3, but they are for a single slice vector. For a vector X of length M = 240000, say, m = 1000 and message
lengths vary from 1000 to 3000 (times the number of bytes needed to represent one data-type element).

A schedule that meets all these requirements, namely, 7 steps of 16 disjoint processor pairs exchan-
ging messages of the same length, will be provided in Section E.4.3.2. We report the solution schedule in
Table E.2. Entry in position (p, ¢) in this table denotes the step (numbered from a to g for clarity) at which
processor p sends its message to processor g.

In Table E.3, we compute the cost of each communication step as (being proportional to) the length of
the longest message involved in this step. The total cost of the redistribution is then the sum of the cost of
all the steps. We further elaborate on how to model communication costs in Section E.4.3.1.
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TAB. E.3 — Communication costs for P = = 16,7 = 3,and s = 5.

Communication costsfor P=Q = 16,r = 3,ands = 5

Step |a|b|c|d|e|f]|g]|l Total
Cost |[3|3(|3|2]2 1] 15

Example 3

The second example, with P = = 16, r = 7, and s = 11, shows the usefulness of an efficient schedule
even when each processor communicates with every other processor. As illustrated in Table E.4, message
lengths vary with a ratio from 2 to 7, and we need to organize the all-to-all exchange steps in such a way
that messages of the same length are communicated at each step. Again, we are able to achieve such a goal
(see Section E.4.3.2). The solution schedule is given in Table E.4 (where steps are numbered from a to p),
and its cost is given in Table E.5. (We do check that each of the 16 steps is composed of messages of the same
length.)

TAB. E.4 — Communication grid and communication steps for P = Q = 16, r = 7, and s = 11. Message
lengths are indicated for a vector X of size L = 1232.

P=Q=16,r=7,s=11,and L = 1232

[S/RO0[1[2[3[4[5]6[7[8[9[10][11][12[13]14]15NM. |

0 7c | 6f | 2n | 6g | 7d | 2p | 5i | 7e | 3m | 4k | 7a | 4 | 31 | 7b | 5h | 20 16
1 4k |3m | 7d | 5h | 20 | 7c | 6f | 2n | 6g | 7e | 2p | 5i | 7b | 31 | 4 | 7a 16
2 5h | 7b | 31 | 4k | 7a | 4 |3m | 7d | 51 | 2n | 7e | 6f | 20 | 6g | 7c | 2p 16
3 6f | 2n | 6g | 7e | 2p | 51 | 7d | 31 | 4 | 7c | 4k |3m | 7a | 5h | 20 | 7b | 16
4 31 | 7¢ | 5i | 2n | 7c | 6f | 20 | 6g | 7d | 2p | 5h | 7a | 3m | 4k | 7b | 4 16
5 7b | 31 | 4 | 7c | 4k |3m | 7e | 5i | 2n | 7d | 6f | 20 | 6g | 7a | 2p | 5h 16
6 20 | 6g | 7c | 2p | 51 | 7d | 31 |4k | 7b | 4 |3m | 7e | 5h | 2n | 7a | 6f 16
7 7a | 51 | 2p | 7d | 6f | 2n | 6g | 7b | 20 | 5h | 7c | 3l | 4 | 7e | 4k | 3m 16
8 3m | 4k | 7b | 4 | 31 | 7a | 5h | 2p | 7e | 6f | 2n | 6g | 7d | 20 | 5i | 7c 16
9 6g | 7a | 20 | 51 | 7e | 31 | 4 | 7c | 4k |3m | 7b | 5h | 2p | 7d | 6f | 2n 16
10 5 | 2p | 7e | 6f | 2n | 6g | 7a | 20 | Bh | 7b | 31 | 4k | 7c | 4 | 3m | 7d 16
1 4 | 7d | 4k |3m | 7b | 5h | 2p | 7a | 6f | 20 | 6g | 7c | 2n | 5i | 7e | 3l 16
12 7d | 20 | Bh | 7b | 3m | 4k | 7c | 4 | 31 | 7a | 5i | 2p | 7e | 6f | 2n | 6g 16
13 2p | 7¢ | 6f | 20 | 6g | 7e | 2n | 5h | 7a | 31 | 4 | 7b | 4k | 3m | 7d | 5i 16
14 7e | 4 |3m | 7a | 5h | 20 | 7b | 6f | 2p | 6g | 7d | 2n | 5i | 7c | 31 | 4k 16
15 2n | 5h | 7a | 31 | 4 | 7b | 4k |3m | 7c | 51 | 20 | 7d | 6f | 2p | 6g | 7e 16
NM. |16 |16 |16 | 16 | 16 | 16 | 16 | 16 | 16 |16 | 16 | 16 | 16 | 16 | 16 | 16

TAB. E.5 — Communication costs for P =@ = 16,r = 7,and s = 11.

Communication costsfor P = Q = 16,7 = 7,and s = 11

Step |a|b|c|d|e|flgl|lh|i|j|k|l|m|n]|o]|p/| Total
Cost |7 |77 |7|7|6|6|5|5|4|4|3|3 2|22} 77
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Example 4

Our third motivating example is with P = @ = 15,7 = 3, and s = 5. As shown in Table E.6, the
communication scheme is severely unbalanced, in that processors may have a different number of messages
to send and/or to receive. Our technique is able to handle such complicated situations. We provide in
Section E.4.4 a schedule composed of 10 steps. It is no longer possible to have messages of the same length
at each step (for instance, processor p = 0 has messages only of length 3 to send, while processor p = 1 has
messages only of length 1 or 2), but we do achieve a redistribution in 10 communication steps, where each
processor sends/receives at most one message per step. The number of communication steps in Table E.6
is clearly optimal, as processor p = 1 has 10 messages to send. The cost of the schedule is given in Table E.7.

TAB. E.6 — Communication grid and communication steps for P = @ = 15, r = 3, and s = 5. Message
lengths are indicated for a vector X of size L = 225.

P=Q=15,r=3,s=5,L = 225

[S/RTO[1[2[3[4[5][6[7[8]9[10][11][12][13]14][NM. |

0 3 [ -[-TJ3d][ -] -T3[-]-TJ3[-]-J3][-7]- 5
1 2 [1h| - |26 | 1i | - [ [1d]| - [2g|1c]| - [2e]|1a]| - | 10
2 - l3e [ - -l3d| -] -]3]|-]-T3a[-]-13]- 5
3 -2 [ -t 2| - J1g 2| - [th|2o| - [1d]|2a| 10
4 - - T3 - -8 -]-Jad|-]-1]3[-]-1]3]| 5
5 3d| - -J3 | -|-J3|-]-[3]-]-l3]|-]-] 10
6 21| -]2a|th| - [26]ti| - 2| 1] -]2d]1g]| -] 5
7 - lBd| - -8 | -|-1388]|-]-13]-]-[3]|-] 10
8 “ligl2d | - |26 - [1j[2a] - [1i|2] - |th|2c]| 5
9 - - (3| - -3 -]-]3]|-]-1]3][-]-/3]| 10
0 3] - -]3|-]-]3]|-|-l3]|-]-]3a]|-]-]5
M [[2a|1b]| - [2c|1g| - |2d [Th | - |2 [ 1j | - [2f]| 1i | - | 10
2 | - T3 -] -3 -]-Jaw|--]3d|-]-13]|-] 5
B3 | -J1a|26] - [1c|2d| - [te|2f| - [1g|2n]| - 1|2 ] 10
14 3a| - | - |3 | - | - ]3| -] -1l3d]|-]-1]3] 5
NM.[6]9]6]6]9]6]6|9[6]6]9]6]6]9]9

TAB. E.7 — Communication costs for P = Q = 15,7 = 3,and s = 5.

Communication costsfor P=Q = 15,r = 3,ands =5

Step (a|b|c|d|e|f|g|h]|i]|]j| Total
Cost |33 |3|3|3|3|2]|2|2|2]| 26

Example 5

Our final example is with P # @, just to show that the size of the two processor grids need not be
the same. See Table E.8 for the communication grid, which is unbalanced. The solution schedule (see Sec-
tion E.4.4) is composed of 4 communication steps, and this number is optimal, since processor ¢ = 1 has 4
messages to receive.
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TAB. E.8 — Communication grid and communication steps for P = 12, Q = 8, r = 4, and s = 3. Message
lengths are indicated for a vector X of size L = 48.

P=12,Q=81r=4,s=3,L =48

[S/RJOJ1[]2]3]4]5]6]7][NM]

0 3a | 1c | - - - - - - 2
1 - | 2b|2a| - - - - - 2
2 - - | 1c |3 | - - - - 2
3 - - - - |3 | 1c| - - 2
4 - - - - - | 2b|2a| - 2
5 - - - - - - 1c | 3a 2
6 3b | 1d | - - - - - - 2
7 - |2 |2b| - - - - - 2
8 - - |1d |3 | - - - - 2
9 - - - - |3 |1d| - - 2
10 - - - - - |2 |2 | - 2
11 - - - - - - |1d | 3b 2
NM.| 2|4 |4 |2 |2]|4]|4]2

TAB. E.9 — Communication costs for P =12, =8,r = 4,and s = 3.

Communication costs for P = 12,Q = 8,r = 4,and s = 3

Step |a| b |c|d]| Total
Cost |3 |3 |11 8

E.3 Literature overview

We briefly survey the literature on the redistribution problem, with particular emphasis given to the
work of Walker and Otto [20].

E.3.1 Message Generation

Several papers have dealt with the problem of efficient code generation for an HPF array assignment
statement like
A[ly sy = s1] = Blla : ug : 82],

where both arrays A and B are distributed in a block-cyclic fashion on a linear processor grid. Some resear-
chers (see Stichnoth et al.[16], van Reeuwijk et al.[18], and Wakatani and Wolfe [19]) have dealt principally
with arrays distributed by using either a purely scattered or cyclic distribution (CYCLIC(1) in HPF) or a
full block distribution (CYCLIC( [%1 ), where n is the array size and p the number of processors).

Recently, however, several algorithms have been published that handle general block-cyclic CYCLIC(K)
distributions. Sophisticated techniques involve finite-state machines (see Chatterjee et al. [3]), set-theoretic
methods (see Gupta et al. [8]), Diophantine equations (see Kennedy et al. [10, 11]), Hermite forms and
lattices (see Thirumalai and Ramanujam [17]), or linear programming (see Ancourt et al. [1]). A comparative
survey of these algorithms can be found in Wang et al. [21], where it is reported that the most powerful
algorithms can handle block-cyclic distributions as efficiently as the simpler case of pure cyclic or full-block
mapping.

At the end of the message generation phase, each processor has computed several different messages
(usually stored in temporary buffers). These messages must be sent to a set of receiving processors, as the
examples of Section E.2 illustrate. Symmetrically, each processor computes the number and length of the
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messages it has to receive and therefore can allocate the corresponding memory space. To summarize, when
the message generation phase is completed, each processor has prepared a message for all those processors
to which it must send data, and each processor possesses all the information regarding the messages it will
receive (number, length, and origin).

E.3.2 Communication Scheduling

Little attention has been paid to the scheduling of the communications induced by the redistribution
operation. Simple strategies have been advocated. For instance, Kalns and Ni [9] view the communications
as a total exchange between all processors and do not further specify the operation. In their comparative
survey, Wang et al. [21] use the following template for executing an array assignment statement :

1. Generate message tables, and post all receives in advance to minimize operating systems overhead
Pack all communication buffers

Carry out barrier synchronization

Send all buffers

Wait for all messages to arrive

6. Unpack all buffers

Although the communication phase is described more precisely, note that there is no explicit scheduling :
all messages are sent simultaneously by using an asynchronous communication protocol. This approach
induces a tremendous requirement in terms of buffering space, and deadlock may well happen when re-
distributing large arrays.

The ScaLAPACK library [4] provides a set of routines to perform array redistribution. As described by
Prylli and Tourancheau [14], a total exchange is organized between processors, which are arranged as a
(virtual) caterpillar. The total exchange is implemented as a succession of steps. At each step, processors
are arranged into pairs that perform a send/receive operation. Then the caterpillar is shifted so that new
exchange pairs are formed. Again, even though special care is taken in implementing the total exchange,
no attempt is made to exploit the fact that some processor pairs may not need to communicate.

The first paper devoted to scheduling the communications induced by a redistribution is that of Walker
and Otto [20]. They review two main possibilities for implementing the communications induced by a
redistribution operation :

A N

Wildcar ded nonb locking receives Similar to the strategy of Wang et al. described above, this asynchro-
nous strategy is simple to implement but requires buffering for all the messages to be received (hence,
the total amount of buffering is as high as the total volume of data to be redistributed).

Synchronous schedules A synchronized algorithm involves communication phases or steps. At each
step, each participating processor posts a receive, sends data, and then waits for the completion of
the receive. But several factors can lead to performance degradation. For instance, some processors
may have to wait for others before they can receive any data. Or hot spots can arise if several pro-
cessors attempt to send messages to the same processor at the same step. To avoid these drawbacks,
Walker and Otto propose to schedule messages so that, at each step, each processor sends no more than
one message and receives no more than one message. This strategy leads to a synchronized algorithm
that is as efficient as the asynchronous version, as demonstrated by experiments (written in MPI [15])
on the IBM SP-1 and Intel Paragon, while requiring much less buffering space.

Walker and Otto [20] provide synchronous schedules only for some special instances of the redistribu-
tion problem, namely, to change the array distribution from CYCLIC(r) on a P-processor linear grid to
CYCLIC(Kr) on a grid of same size. Their main result is to provide a schedule composed of K steps. At
each step, all processors send and receive exactly one message. If K is smaller than P, the size of the grid,
there is a dramatic improvement over a traditional all-to-all implementation.

Our aim in this article is to extend Walker and Otto’s work in order to solve the general redistribution
problem, that is, moving from a CYCLIC(r) distribution on a P-processor grid to a CYCLIC(s) distribu-
tion on a Q-processor grid. We retain their original idea : schedule the communications into steps. At each
step, each participating processor neither sends nor receives more than one message, to avoid hot spots and
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resource contentions. As explained in [20], this strategy is well suited to current parallel architectures. In
Section E.4.3.1, we give a precise framework to model the cost of a redistribution.

E.4 Main Results

E.4.1 Problem Form ulation

Consider an array X[0...M — 1] of size M that is distributed according to a block-cyclic distribution CY-
CLIC(r) onto alinear grid of P processors (numbered from p = 0 to p = P — 1). Our goal is to redistribute
X by using a CYCLIC(s) distribution on ) processors (numbered from ¢ = 0 to ¢ = @ — 1). Equiva-
lently, we perform the HPF assignment Y = X, where X is CYCLIC(r) on a P-processor grid, while Y is
CYCLIC(s) ona Q-processor grid?.

The block-cyclic data distribution maps the global index i of vector X (i.e., element X [i]) onto a processor
index p, a block index [, and an item index , local to the block (with all indices starting at 0). The mapping
i — (p, 1, z) may be written as

i—»@zuﬁpmdal=“gtx=immm. (E1)
We derive the relation
i=(Pl+pr+z. (E.2)

Similarly, since Y is distributed CYCLIC(S) on a Q-processor grid, its global index j is mapped as j —
(g, m,y), where j = (@m + ¢)s + y. We then get the redistribution equation

i=(Pl+pr+z=(Q@m+q)s+y. (E.3)

Let L = lem(Pr, @s) be the least common multiple of Pr and @s. Elements i and L + ¢ of X are initially
distributed onto the same processor p = |i/r] mod P (because L is a multiple of Pr, hence r divides L,
and P divides L =+ r). For a similar reason, these two elements will be redistributed onto the same processor
g = |i/s| mod Q. In other words, the redistribution pattern repeats after each slice of L elements. Therefore,
we restrict the discussion to a vector X of length L in the following. Let g = ged(Pr, @s) (of course Lg =
Pr@s). The bounds in equation (E.3) become

0<p<P 0<¢g<@
0<I<& =% o<m< ==~ (E.4)
0<z<r 0<y<s.

DEFINITION 5 Given the distribution parameters r and s, and the grid parameters P and (@, the redistrib ution
problem is to determine all the messages to be exchanged, that is, to find all values of p and q such that the
redistribution equation (E.3) has a solution in the unknownsl, m, x, andy, subject to the bounds in Equation (E.4).
Computing the number of solutions for a given processor pair (p,q) will give the length of the message.

We start with a simple lemma that leads to a handy simplification :

LEMMA 6 We can assume that r and s are relatively prime, that is, ged(r, s) = 1.

Proof The redistribution equation (E.3) can be expressed as
pr—gqs =z + (Prl — Qsm), (E.5)
where z =y —z € [1 —r,s — 1]. Let A = ged(r, s), r = Ar’ and s = As’. Equation (E.3) can be expressed as

A(pr' —gs') =z + A(Pr'l — Qs'm).

2The more general assignment Y[a : ..] = X[b : ..] can be dealt with similarly.
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If it has a solution for a given processor pair (p, ¢), then A divides z, z = Az', and we deduce a solution for
the redistribution problem with ', s/, P, and Q. [ |

Let us illustrate this simplification on one of our motivating examples :

Back to Example 4

Note that we need to scale message lengths to move from a redistribution operation where r and s are
relatively prime to one where they are not. Let us return to Example 4 and assume for a while that we know
how to build the communication grid in Table E.6. To deduce the communication grid for » = 12 and s = 20,
say, we keep the same messages, but we scale all lengths by A = ged(r,s) = 4. This process makes sense
because the new size of a vector slice is AL rather than L. See Table E.10 for the resulting communication
grid. Of course, the scheduling of the communications will remain the same as with r = 3 and s = 5, while
the cost in Table E.7 will be multiplied by A.

TAB. E.10 - Communications for P = () = 15,7 = 12, and s = 20. Message lengths are indicated for a vector
X of size L = 900.

P=Q=15,r=12,s =20, L = 900

[S/RTO[1[2[3[4[5][6[7[8]9[10][11[12][13]14][NM. |

0 12 | - - 12 - - 12 - - 12 - - 12 - - 5
1 8| 4|-18|4|-18|4|-18|4)|-|8]4]|- 10
2 - |12 - - |12 - - |12 - - |12 - - |12 - 5
3 -1 48| -|14|8]|-|4|8]|-|14|8]|-1]4]8 10
4 - - 12 - - 12 - - 12 - - [12 ] - - |12 5
5 12 | - - 12 - - 12 - - 12 - - 12 - - 5
6 8| 4 |-18|4|-18|4|-18|4)|-|8]4]|- 10
7 - |12 - - |12 - - |12 - - |12 - - |12 - 5
8 -1 48| -|14|8]|-|4|8]|-|14|8]|-1]14]8 10
9 - - 12 - - 12 - - 12 - - 12 - - |12 5
10 12 | - - |12 - - |12 - - |12 - - |12 - - 5
11 8| 4| -|8|4|-]|8|4|-|8|4|-]|8]|4] - 10
12 - | 12 - | 12 - | 12 - |12 - | 12 5
13 - | 4|8 -4 |8|-]4|8]|-|4|8)|-]4]38 10
14 - - |12 - 12 - - 12 - - (12 - - |12 5
N.M 6 |96 |6|9]|6|6|]9|6|6|9|6]|6]9]6

E.4.2 Communication Pattern

LEMMA 7 Consider a redistribution with parameters v, s, P, and Q, and assume that ged(r,s) = 1. Let g =
ged(Pr, Q)s). The communication pattern induced by the redistribution operation is a complete all-to-all operation if
and only if

g<r+s-—1.

Proof We rewrite Equation (E.5) as pr — gs = 2z + Ag because Prl — @)sm is an arbitrary multiple of g. Since
z lies in the interval [1 — r, s — 1] whose length is r + s — 1, it is guaranteed that a multiple of g can be found
within this interval if ¢ < r + s — 1. Conversely, assume that g > r 4+ s : we will exhibit a processor pair
(p, g) exchanging no message. Indeed, p = P — 1 and ¢ = 0 is the desired processor pair. To see this, note
that pr — ¢s = —r mod g (because g divides Pr); hence, no multiple of g can be added to pr — gs so that
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it lies in the interval [1 —r, s — 1], Therefore, no message will be sent from p to ¢ during the redistribution.’ ll

In the following, our aim is to characterize the pairs of processors that need to communicate during the
redistribution operation (in the case g > r + s). Consider the following function f :

{ 0.P-1]x[0.Q -1 — Zg
P, 9) — f(p,q) =pr—gsmodyg
Function f maps each processor pair (p, g) onto the congruence class of pr — gs modulo g. According to

the proof of Lemma 7, p sends a message to ¢ if and only if f(p,q) € [1 —r,s — 1] (modg). Let us illustrate
this process by using one of our motivating examples.

(E.6)

Back to Example 5

In this example, P = 12, Q = 8, r = 4 and s = 3. We have g = 24. Take p = 11 (as in the proof of
Lemma 7). If ¢ = 0, f(p,q) = —4 ¢ [-3,2], and ¢ receives no message from p. Butif ¢ = 6, f(p,q) =2 €
[—3,2], and g does receive a message (see Table E.8 to check this).

DEFINITION 6 For 0 < k < g, let class(k) = f~1(k), that is,
71 k) ={(p,) €[0-.P -1 x[0.Q = 1]; f(p,q) =k}

To characterize classes, we introduce integers u and v such that
ru—sv=1

(the extended Euclid algorithm provides such numbers for relatively prime r and s). We have the following
result.

PROPOSITION 4
Assume that ged(r,s) = 1. For0 < k < g,

dass(k)={(§)=x<i>+k<z>mod(g>; ogu%‘?}.

Proof First, to see that PTQ indeed is an integer, note that PQ = PQ(ru — sv) = PrQu — QsPwv. Since g
divides both Pr and @s, it divides P(Q).

Two different classes are disjoint (by definition). It turns out that all classes have the same number of
elements. To see this, note that for all k € [0,9 — 1],

(p,q) € class(0) <= (p + ku mod P, q + kv mod Q) € class(k).

Indeed, p + ku mod P = p + ku + dP for some integer d, ¢ + kv mod @ = ¢ + kv + d'Q for some integer d’,
and

flp+kumod Pg+kvmod Q) = (p+ku-+dP)r— (q+kv+dQ)smodg
= pr—gs+k+dPr+dQ@smodg
= f(p,g) +kmodyg.

Since there are g classes, we deduce that the number of elements in each class is Pg—Q.
Next, we see that (px,¢x) = (As mod P, Ar mod Q) € class(0) for0 < A < PTQ (because par — qas =
0 mod g).
Finally, (px,gx) = (Pa, gn) implies that P divides (A — A')s and @ divides (A — X')r. Therefore, both Pr

and Qs divide (A — X)rs; hence, L = lem(Pr,Qs) = % divides (A — X')rs. We deduce that PgQ divides

(A = X'); hence all the processors pairs (py,gx) for 0 < A < % are distinct. We have thus enumerated
class(0). [ |

3For another proof, see Petitet [13].
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DEFINITION 7 Consider a redistribution with parameters r, s, P, and @, and assume that gcd(r,s) = 1. Let
length(p, q) be the length of the message sent by processor p to processor q to redistribute a single slice vector
X of size L = lem(Pr,Qs).

As we said earlier, the communication pattern repeats for each slice, and the value reported in the
communication grid tables of Section E.2 are for a single slice; that is, they are equal to length(p, q). Classes
are interesting because they represent homogeneous communications : all processor pairs in a given class
exchange a message of same length.

PROPOSITION 5
Assume that ged(r,s) = 1, and let L = lem(Pr,@Qs) be the length of the vector X to be redistributed. Let
vol(k) be the piecewise function given by Figure E.1 for k € [1 —r,s — 1].

- lfr+s—1<g, thenfork e[l —r,s—1],

(p,q) € class(k) = length(p, q) = vol(k)

(recall that if (p,q) € class(k) where k ¢ [1 — r, s — 1], then p sends no message to gq).
- Ifg<r+s, thenfork €[0,g— 1],

(p,q) € class(k) = length(p, q) = Z vol(k').

k'€[l—r,s—1]; ¥’ mod g=k

vol vol

FIG. E.1 — The piecewise linear function vol.

Proof We simply count the number of solutions to the redistribution equation pr — ¢s = y — z mod g,
where0 < z < rand 0 < y < s. We easily derive the piecewise linear vol function represented in Figure E.1.

We now know how to build the communication tables in Section E.2. We still have to derive a schedule,
that is, a way to organize the communications as efficiently as possible.

E.4.3 Communication Schedule
E.4.3.1 Communication Model

According to the previous discussion, we concentrate on schedules that are composed of several succes-
sive steps. At each step, each sender should send no more than one message ; symmetrically, each receiver
should receive no more than one message. We give a formal definition of a schedule as follows.
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DEFINITION 8 Consider a redistribution with parameters r, s, P, and Q.

— The comm unication grid is a PQ table with a nonzero entry length(p, q) in position (p,q) if and only if
p has to send a message to q.

— A communication step is a collection of pairs {(p1,q1); (p2,92),--., (P, qe)} such that p; # p; for
1<i<j<t g #q; forl <i<j<t, andlength(p;,q;) >0 for1 <i <t. A communication step is
complete ift = min(P, Q) (either all senders or all receivers are active) and is incomplete otherwise. The
cost of a communication step is the maximum value of its entries, in other words, max{length(p;,¢;); 1 <
i<t}

— A schedule is a succession of communication steps such that each nonzero entry in the communication grid
appears in one and only one of the steps. The cost of a schedule may be evaluated in two ways :

1. the number of steps N, which is simply the number of communication steps in the schedule; or

2. the total cost T, which is the sum of the cost of each communication step (as defined above).

The communication grid, as illustrated in the tables of Section E.2, summarizes the length of the required
communications for a single slice vector, that is, a vector of size L = Ilem(Pr,Qs). The motivation for
evaluating schedules via their number of steps or via their total cost is as follows :

— The number of steps N is the number of synchronizations required to implement the schedule. If
we roughly estimate each communication step involving all processors (a permutation) as a measure
unit, the number of steps is the good evaluation of the cost of the redistribution.

— We may try to be more precise. At each step, several messages of different lengths are exchanged.
The duration of a step is likely to be related to the longest length of these messages. A simple model
would state that the cost of a step is a + max{length(p;, ¢;) }7, where « is a start-up time and 7 the
inverse of the bandwidth on a physical communication link. Although this expression does not take
hot spots and link contentions into account, it has proven useful on a variety of machines [4, 6]. The
cost of a redistribution, according to this formula, is the affine expression

aN + BT

with motivates our interest in both the number of steps and the total cost.

E.4.3.2 A Simple Case

There is a very simple characterization of processor pairs in each class, in the special case where r and
@, as well as s and P, are relatively prime.

PROPOSITION 6
Assume that ged(r,s) = 1. If ged(r, Q) = ged(s, P) =1, then for 0 < k < g,

(p,q) € class(k) <= q=s"'(pr —k)mod g <= p=r"'(gs + k) mod g

(s~ ! and r! respectively denote the inverses of s and r modulo g).

Proof Since ged(r, s) = ged(r, Q) = 1, r is relatively prime with @s, hence with g. Therefore the inverse
of r modulo g is well defined (and can be computed by using the extended Euclid algorithm applied to r
and g). Similarly, the inverse of s modulo g is well defined, too. The condition pr — ¢gs = k mod g easily
translates into the conditions of the proposition.

In this simple case, we have a very nice solution to our scheduling problem. Assume first that g > r+s—
1. Then we simply schedule communications class by class. Each class is composed of PTQ processor pairs
that are equally distributed on each row and column of the communication grid : in each class, there are
exactly % sending processors per row, and 5 receiving processors per column. This is a direct consequence
of Proposition 6. Note that g does divide P and @ : under the hypothesis gcd(r,Q) = ged(s,P) = 1,9 =
ged(Pr, Qs) = ged(P, Qs) = ged(P, Q).
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To schedule a class, we want each processor p = ag + p', where 0 < a < g, 0 <p < g tosend a

message to each processor ¢ = g + ¢', where 0 < § < %, 0<¢q¢ <g,andq = s~ p'r — k) mod g (or
equivalently, p' = r~!(¢'s + k) mod g if we look at the receiving side). In other words, the processor in
position p' within each block of g elements must send a message to the processor in position ¢' within each
block of g elements. This can be done in 2@ complete steps of min(P, Q) messages. For instance, if
there are five blocks of senders (P = 5g) and three blocks of receivers (@ = 3g), we have 5 steps where 3
blocks of senders send messages to 3 blocks of receivers. We can use any algorithm for generating the block
permutation ; the ordering of the communications between blocks is irrelevant.

If g = r + s — 1, we have an all-to-all communication scheme, as illustrated in Example 3, but our
scheduling by classes leads to an algorithm where all messages have the same length at a given step. If
g < r+s—1,wehave fewer classes than r + s — 1. In this case we simply regroup classes that are equivalent
modulo g and proceed as before.

We summarize the discussion by the following result

PROPOSITION 7
Assume that ged(r,s) = 1. If ged(r,Q) = ged(s, P) = 1, then scheduling each class successively leads to an
optimal communication scheme, in terms of both the number of steps and the total cost.

Proof Assume without loss of generality that P > (). According to the previous discussion, if g > r+s—1,
we have r + s — 1 (the number of classes) times 5 (the number of steps for each class) communication
steps. At each step we schedule messages of the same class k, hence of same length vol(k). If g <r +s—1,

we have g times 5 communication steps, each composed of messages of the same length (namely,

2ok e[i—rs—1]; ¥ mod g=k VOI(k") when processing a given class k € [0, — 1]. |

Remark 4 Walker and Otto [20] deal with a redistribution with P = @ and s = Kr. We have shown
that going from r to Kr can be simplified to going from r = 1 to s = K. If gcd(K, P) = 1, the technique
described in this section enables us to retrieve the results of [20].

E.4.4 The General Case

When ged(s,P) = s' > 1, entries of the communication grid may not be evenly distributed on the
rows (senders). Similarly, when ged(r, Q) = 7' > 1, entries of the communication grid may not be evenly
distributed on the columns (receivers).

Back to Example 4

We have P = 15and s = 5; hence s’ = 5. We see in Table E.6 that some rows of the communication grid
have 5 nonzero entries (messages), while other rows have 9. Similarly, Q = 15 and r» = 3; hence ' = 3.
Some columns of the communication grid have 6 nonzero entries, while other columns have 10.

Our first goal is to determine the maximum number of nonzero entries in a row or a column of the
communication grid. We start by analyzing the distribution of each class.

LEMMA 8 Let ged(s, P) = s' and ged(r,Q) = r'. Let P = P's' and Q = Q'r', and g9 = ged(P',Q"). Then
g =1's'go, and in any class class(k), k € [0, g — 1], the processors pairs are distributed as follows :

! . . . . . .
— There are 5—0 entries per column in Q' columns of the grid, and none in the remaining columns.

1
— There are 2= entries per row in P' rows of the ¢rid, and none in the remaining rows.
g0



E.4 Main Results

71

Proof First let us check that g = r's’go. We write r = r'7” and s = s's”. We have Pr = (P's')(r'7”) =
(r's")(P'r”). Similarly, @s = (r's")(Q's”). Thus g = ged(Pr,Qs) = r's' ged(P'r”,Q's”). Since r” is relati-
vely prime with @' (by definition of 7') and with s” (because ged(r,s) = 1), we have gecd(P'r”,Q's”) =
ged(P',Q's”). Similarly, ged(P',Q's”) = ged(P', Q") = go.

There are PTQ elements per class. Since all classes are obtained by a translation of class(0), we can
restrict ourselves to discussing the distribution of elements in this class. The formula in Lemma 4 states

that class(0) = {( 2 ) =A ( j > mod ( g )} for0 <A< PTQ. But As mod P can take only those values

that are multiple of s’ and Ar mod @ can take only those values that are multiple of r’, hence the result. To

PQ _ (P'H(@Qr) _ P'Q [}
g

check the total number of elements, note that 590 7o

Let us illustrate Lemma 8 with one of our motivating examples.

Back to Example 4

Elements of each class should be located on % =7 =3 rowsand Q—OI = 2 = 5 columns of the processor
grid. Let us check class(1) for instance. Indeed we have the following :

3
1

CIaSS(]') = { (2’ ]‘)’ (77 4)5 (12’ 7)5 (27 10)’ (77 13)5 (127 ]‘)5
(2,4),(7,7),(12,10), (2,13), (7, 1), (12,4), (2, 7),(7,10), (12,13) }

Lemma 8 shows that we cannot use a schedule based on classes : considering each class separately
would lead to incomplete communication steps. Rather, we should build up communication steps by
mixing elements of several classes, in order to use all available processors. The maximum number of ele-
ments in a row or column of the communication grid is an obvious lower bound for the number of steps of
any schedule, because each processor cannot send (or receive) more than one message at any communica-
tion step.

PROPOSITION 8
Assume that ged(r,s) = 1 and that » + s — 1 < g (otherwise the communication grid is full). If we use the
notations of Lemma 8,

7
1. the maximum number mg of elements in a row of the communication grid is mp = ?—O[TJFS#]; and
. - - . . - ! —
2. the maximum number m¢ of elements in a column of the communication grid is m¢ = };—Ofrt#]

Proof According to Lemma 4, two elements of class(k) and class(k') are on the same row of the commu-
nication grid if As + ku = X's + k'u mod P for some A and X in the interval [0, % — 1]. Necessarily, s/,
which divides P and (A — X')s, divides (k — k')u. But we have ru — sv = 1, and s is relatively prime with .
A fortiori s’ is relatively prime with u. Therefore s’ divides k — &'

Classes share the same rows of the processor grid if they are congruent modulo s'. This induces a
partition on classes. Since there are exactly ?—0 elements per row in each class, and since the number of

classes congruent to the same value modulo s’ is either [Z£5-1] or [Z£2-1], we deduce the value of mg.
The value of m¢ is obtained similarly. |

It turns out that the lower bound for the number of steps given by Lemma 8 can indeed be achieved.

THEOREME 1
Assume that ged(r, s) = 1 and that 7+ s—1 < g (otherwise the communication grid is full), and use the notations
of Lemma 8 and Lemma 8. The optimal number of steps N,,; for any schedule is

Nopt = max{mg, mc}.
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Proof We already know that the number of steps A of any schedule is greater than or equal to
max{mg, mc }. We give a constructive proof that this bound is tight : we derive a schedule whose number of
steps is max{mg, m¢}. To do so, we borrow some material from graph theory. We view the communication
grid as a graph G = (V, E), where

-V =PUQ,where P = {0,1,...,p — 1} is the set of sending processors, and Q = {0,1,...,¢ — 1} is

the set of receiving processors ; and

- e = (p,q) € Eif and only if the entry (p, ¢) in the communication grid is nonzero.
G is a bipartite graph (all edges link a vertex in P to a vertex in Q). The degree of G, defined as the
maximum degree of its vertices, is dg = max{mg,mc}. According to Konig’s edge coloring theorem,
the edge coloring number of a bipartite graph is equal to its degree (see [7, vol. 2, p.1666] or Berge [2, p.
238]). This means that the edges of a bipartite graph can be partitioned in dg disjoint edge matchings.
A constructive proof is as follows : repeatedly extract from E a maximum matching that saturates all
maximum degree nodes. At each iteration, the existence of such a maximum matching is guaranteed
(see Berge [2, p. 130]). To define the schedule, we simply let the matchings at each iteration represent the
communication steps. [ |

Remark 5 The proof of Theorem 1 gives a bound for the complexity of determining the optimal number of
steps. The best known algorithm for weighted, bipartite matching has cost O(|V'|?) (Hungarian method, [7,
vol. 1, p.206]). Since there are at most max(P, Q) iterations to construct the schedule, we have a procedure
in O((|P| + |Q|)*) to construct a schedule whose number of steps is minimal.

E.4.5 Schedule Implementation

Our goal is twofold when designing a schedule :

- minimize the number of steps of the schedule, and

— minimize the total cost of the schedule.
We have already explained how to view the communication grid as a bipartite graph G = (V, E). More
accurately, we view it as an edge-weighted bipartite graph : the edge of each edge (p,q) is the length
length(p, q) of the message sent by processor p to processor g.

We adopt the following two strategies :

stepwise If we specify the number of steps, we have to choose at each iteration a maximum matching that
saturates all nodes of maximum degree. Since we are free to select any of such matchings, a natural
idea is to select among all such matchings one of maximum weight (the weight of a matching is
defined as the sum of the weight of its edges).

greedy If we specify the total cost, we can adopt a greedy heuristic that selects a maximum weighted
matching at each step. We might end up with a schedule having more than N, steps but whose total
cost is less.

To implement both approaches, we rely on a linear programming framework (see [7, chapter 30]). Let A
be the |V| x | E| incidence matrix of G, where

g — 1 if edge j is incident to vertex ¢
| 0otherwise

Since G is bipartite, A is totally unimodular (each square submatrix of A has determinant 0, 1 or —1). The
matching polytope of G is the set of all vectors z € QZ/ such that
z(e) >0 Vee E

{ Desp2(e) <1 YveV (E7)
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(intuitively, z(e) = 1 iff edge e is selected in the matching). Because the polyhedron determined by Equa-
tion E.7 is integral, we can rewrite it as the set of all vectors z € Q' such that

1
x>0, Az < bwhereb = 1 e QVl. (E.8)
1

To find a maximum weighted matching, we look for « such that
max{c’z; r >0, Az < b}, (E.9)

where ¢ € NI is the weight vector.

If we choose the greedy strategy, we simply repeat the search for a maximum weighted matching until
all communications are done. If we choose the stepwise strategy, we have to ensure that, at each iteration, all
vertices of maximum degree are saturated. This task is not difficult : for each vertex v of maximum degree
in position 4, we replace the constraint (Az); < 1 by (Az); = 1. This translates into Y*Az = k, where k is
the number of maximum degree vertices and Y € {0,1}/V! whose entry in position i is 1 iff the ith vertex
is of maximum degree. We note that in either case we have a polynomial method. Because the matching
polyhedron is integral, we solve a rational linear problem but are guaranteed to find integer solutions.

To see the fact that the greedy strategy can be better than the stepwise strategy in terms of total cost,
consider the following example.

Example 6

Consider a redistribution problem with P = 15, Q = 6, r = 2, and s = 3. The communication grid and
the stepwise strategy are illustrated in Table E.11 : the number of steps is equal to 10, which is optimal, but
the total cost is 20 (see Table E.12). The greedy strategy requires more steps, namely, 12 (see Table E.13), but
its total cost is 18 only (see Table E.14).

TAB. E.11 - Communication grid and communication steps (stepwise strategy) for P = 15, Q = 6,r = 2,
and s = 3. Message lengths are indicated for a vector X of size L = 90.

Stepwise strategy for P =15,Q = 6,r = 2,and s = 3

[S/RJTOJ1]2]3]4]5][NM]

0 2a | - | 2b| - | 2¢ | - 3
T |[ih | 1|14 |te|1g| 1f]| 6
2 -2 | - | 2| - | 2a 3
3 2b | - | 2| - | 2a | - 3
4 |[1j[1te| 1i [1h]| If |1g| 6
5 - | 2| - 2| - | 2b 3
6 2| - |2a| - | 2b| - 3
7 |[1i [Inh | 1f |[1g| 4 |1d| 6
8 -2 | - |2b| - | 2 3
9 2f - 2e - 2d - 3
10 |[1g| 1y [1d|1f|1i|1h| 6
m | - |2g] - |2d] - | 2| 3
12 2d - 2h - 2e - 3
13 |[Te | 1f [1g| 4 |1h | 1| 6
4 | - [2d| - 2] -2 3
NM. | 10 | 10 | 10 | 10 | 10 | 10
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TAB. E.12 - Communication costs (stepwise strategy) for P =15, = 6,7 = 2,and s = 3.

Stepwise strategy for P = 15,Q = 6,r = 2,and s = 3

Step |a|b|c|d|e|f|lg|h]|i]]]| Total
Cost |22 |2|2(2|2]2]|2|2]|2]| 20

TAB. E.13 - Communication grid and communication steps (greedy strategy) for P =15, ) = 6, r = 2, and
s = 3. Message lengths are indicated for a vector X of size L = 90.

Greedy strategy for P = 15,Q = 6,r = 2,and s = 3

[S/RJ0o[1]2]3]4]5][NM]

0 2a | - | 2b | - | 2c| - 3
T [ 1j[ik|1u]|1h|ig| 1] 6
2 - |26 | - | 2| - | 2a 3
3 2b | - | 2| - | 2a| - 3
4 1i | 1g | Th | 1f | 1e 15 6
5 - | 2| - |2a]| - | 2b 3
6 2| - | 2| - | 2b]| - 3
7 |[1h|1le|1g|1i | 4 |1d]| 6
8 -2 | - | 2b| - | 2 3
9 2e | - | 2f | - |2d | - 3
10 1f | 1i | 1d | 1g | 1h | 1k 6
11 - 2f - | 2d - 2e 3
12 2d - 2e - 2f - 3
3 |[1g|th |1 |4 |1k|1]| 6
14 - 2d - 2e - 2f 3
NM. || 10 |10 | 10 | 10 | 10 | 10

E.4.5.1 Comparison with Walker and Otto’s Strategy

Walker and Otto [20] deal with a redistribution where P = () and s = Kr. We know that going from r to
Kr can be simplified to going from r = 1to s = K. If gcd(K, P) = 1, we apply the results of Section E.4.3.2
(see Remark 4). In the general case (s’ = gcd(K, P) > 1), classes are evenly distributed among the columns
of the communication grid (because ' = r = 1), but not necessarily among the rows. However, all rows
have the same total number of nonzero elements because s’ divides r + s — 1 = K. In other words, the
bipartite graph is regular. And since P = @), any maximum matching is a perfect matching.

Because r = 1, all messages have the same length : length(p, ¢) = 1 for every nonzero entry (p, ¢) in the
communication grid. As a consequence, the stepwise strategy will lead to an optimal schedule, in terms of
both the number of steps and the total cost. Note that N,,; = K under the hypotheses of Walker and Otto :
using the notations of Lemma 8, we haveg = P = Q.Sincer =r' =1,Q' = Q; s' = ged(K,P), P = s'P/,

TAB. E.14 — Communication costs (greedy strategy) for P =15, =6, =2,and s = 3.
Greedy strategy for P = 15,Q = 6,7 = 2,and s = 3

Step (a|b|c|d|e|f|lg|h|i]]j]|k]|I| Total
Cost (2|2 |22 (22|11 |1|1|1]1]| 18
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and go = P'. We have

"r+s—1
= = =s=K
mp go[ o 1=s ;
P r+s-1 P s
= — = —— = :K
mc gof m 1 Py s

Note that the same result applies when r = 1 and P # (). Because the graph is regular and all entries in
the communication grid are equal, we have the following theorem, which extends Walker and Otto main
result [20].

PROPOSITION 9
Consider a redistribution problem with » = 1 (and arbitrary P, @ and s). The schedule generated by the stepwise
strategy is optimal, in terms of both the number of steps and the total cost.

The strategy presented in this article makes it possible to directly handle a redistribution from an ar-
bitrary CYCLIC(r) to an arbitrary CYCLIC(S) . In contrast, the strategy advocated by Walker and Otto
requires two redistributions : one from CYCLIC(r) to CYCLIC(Icm(r,s)) and a second one from CY-
CLIC(Iecm(r,s)) to CYCLIC(s) .

E.5 MPI Experiments

This section presents results for runs on the Intel Paragon for the redistribution algorithm described in
Section E.4.

E.5.1 Description

Experiments have been executed on the Intel Paragon XP/S 5 computer with a C program calling rou-
tines from the MPI library. MPI is chosen for portability and reusability reasons. Schedules are composed
of steps, and each step generates at most one send and/or one receive per processor. Hence we used only
one-to-one communication primitives from MPI.

Our main objective was a comparison of our new scheduling strategy against the current redistribu-
tion algorithm of ScaLAPACK [14], namely, the “caterpillar” algorithm that was briefly summarized in
Section E.3.2. To run our scheduling algorithm, we proceed as follows :

1. Compute schedule steps using the results of Section E.4.

Pack all the communication buffers.
Carry out barrier synchronization.
Start the timer.

Execute communications using our redistribution algorithm (resp. the caterpillar algorithm).

ARSI AN

Stop the timer.
7. Unpack all buffers.

The maximum of the timers is taken over all processors. We emphasize that we do not take the cost of
message generation into account : we compare communication costs only.

Instead of the caterpillar algorithm, we could have used the MPI_ALLTOALLVcommunication primitive.
It turns out that the caterpillar algorithm leads to better performance than the MPI_ALLTOALLVfor all our
experiments (the difference is roughly 20% for short vectors and 5% for long vectors).

We use the same physical processors for the input and the output processor grid. Results are not very
sensitive to having the same grid or disjoint grids for senders and receivers.

E.5.2 Results

Three experiments are presented below. The first two experiments use the schedule presented in Sec-
tion E.4.3.2, which is optimal in terms of both the number of steps A" and the total cost 7. The third expe-
riment uses the schedule presented in Section E.4.4, which is optimal only in terms of V.
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Back to Example 2

The first experiment corresponds to Example 2, with P = Q = 16, r = 3, and s = 5. The redistribution
schedule requires 7 steps (see Table E.3). Since all messages have same length, the theoretical improvement
over the caterpillar algorithm, which as 16 steps, is 7/16 ~ 0.44. Figure E.2 shows that there is a significant
difference between the two execution times. The theoretical ratio is obtained for very small vectors (e.g., of
size 1200 double-precision reals). This result is not surprising because start-up times dominate the cost for
small vectors. For larger vectors the ratio varies between 0.56 and 0.64. This is due to contention problems :
our scheduler needs only 7 step, but each step generates 16 communications, whereas each of the 16 steps
of the caterpillar algorithm generates fewer communications (between 6 and 8 per step), thereby generating
less contention.

P=Q=16,r =3 ands=5

15000
10000 -
w
=1
—
o
(&)
D
w
o
S
=
5000 -
A caterpillar
/_N/“ ————— optimal scheduling
/F/ -
o . .
o 50000 100000 150000

Global size of redistributed vector (64-bit double precision)

FIG. E.2 — Comparing redistribution times on the Intel Paragon for P = @ = 16, r =3 and s = 5.

Back to Example 3

The second experiment corresponds to Example 3, with P = ) = 16 processors, r = 7, and s = 11. Our
redistribution schedule requires 16 steps, and its total cost is 7 = 77 (see Table E.5). The caterpillar algo-
rithm requires 16 steps, too, but at each step at least one processor sends a message of length (proportional
to) 7, hence a total cost of 112. The theoretical gain 77/112 ~ 0.69 is to be expected for very long vectors only
(because of start-up times). We do not obtain anything better than 0.86, because of contentions. Experiments
on an IBM SP2 or on a Network of Workstations would most likely lead to more favorable ratios.

Back to Example 5

The third experiment corresponds to Example 5, with P =12, Q = 8, 7 = 4, and s = 3. This experiment
is similar to the first one in that our redistribution schedule requires much fewer steps (4) than does the
caterpillar (12). There are two differences, however : P # (), and our algorithm is not guaranteed to be
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FIG. E.3 - Time measurements for the caterpillar and greedy schedules, for different vector sizes, redistri-
buted from P =16, r =7to Q = 16, s = 11.

optimal in terms of total cost. Instead of obtaining the theoretical ratio of 4/12 = 0.33, we obtain results close
to 0.6. To explain this, we need to take a closer look at the caterpillar algorithm. As shown in Table E.15, 6 of
the 12 steps of the caterpillar algorithm are indeed empty steps, and the theoretical ratio rather is 4/6 = 0.66.

TAB. E.15 - Communication costs for P = 12, @ = 8, r = 4, and s = 3 with the caterpillar schedule.
Caterpillar for P =12,Q = 8,r =4,and s = 3

Step |a|b|c|d|e|f|g|h|i]|]j|k]I]| Total
Cost |3|0(0|0|3|3|3|0|0]|0|3]|3]| 18

E.6 Conclusion

In this article, we have extended Walker and Otto’s work in order to solve the general redistribution pro-
blem, that is, moving from a CYCLIC(r) distribution on a P-processor grid to a CYCLIC(s) distribution
on a Q-processor grid. For any values of the redistribution parameters P, Q, 7, and s, we have constructed a
schedule whose number of steps is optimal. Such a schedule has been shown optimal in terms of total cost
for some particular instances of the redistribution problem (that include Walker and Otto’s work). Future
work will be devoted to finding a schedule that is optimal in terms of both the number of steps and the total
cost for arbitrary values of the redistribution problem. Since this problem seems very difficult (it may prove
NP-complete), another perspective is to further explore the use of heuristics like the greedy algorithm that
we have introduced, and to assess their performances.
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FIG. E.4 - Time measurements for the caterpillar and greedy schedules, for different vector sizes, redistri-
buted from P =15,r =4to Q =6, s = 3.

We have run a few experiments, and these generated optimistic results. One of the next releases of the
ScaLAPACK library may well include the redistribution algorithm presented in this article.
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F.1 Introduction

Developing large scientific applications on distributed memory machines is a difficult task, especially
for newcomers or people without a deep knowledge of parallelism. Currently, we notice that parallelism not
only enters industrial areas but also other fields of science. The aim of European projects, like EUROPORT
1 and 2 is clear : to prove the validity of a parallel solution for large industrial codes. Moreover, in order to
solve larger problems, scientists need more and more powerful computers in terms of Mflops and memory
size. During the last two years, big efforts have been put in the definition of libraries and languages. These
efforts lead to standards like BLAS (Basic Linear Algebra Subroutines), MPI (Message Passing Interface)
and HPF (High Performance Fortran). Some parallel libraries like ScaLAPACK or NAG start to be widely
used. Finally, many tools for the development of applications using data-parallel languages begin to appear.
Nevertheless, almost none of them offers a complete collection of portable tools and almost none of them is
available as a free software.

It is unlikely that we will ever see a “black box” able to parallelize a non-trivial serial code into a perfor-
ming parallel code. The user needs to help the compiler by giving information about his code. This can be
done for example via directives inserted in the source file like in HPE But it is also now admitted that the
insertion of these directives is also a trivial task for average users, who do not have a deep knowledge of
parallelization techniques. Therefore, we think that interactive parallelization tools have a great importance
in parallel computing, even in the limited field of numerical problems.

This paper is the first of two papers, presenting the HPFIT project and the developments made around
it. This first paper presents the HPFIT project in general and its kernel, TransTOOL. The second paper [§]
presents the data structure visualization tool Vislt and HPF extensions for irregular problems. These two
papers describe the first results of our development effort.

The remainder of this paper is organized as follows. Section FE.2 gives a short survey of tools for data-
parallel programming. Section E.3 presents the development of a parallel application and describes the
HPFIT project. In Section F.4, we present TransTOOL which contains the editor, the parser, the dependence
analysis tool, and an optimization kernel. Section E5 presents two research directions in the TransTOOL
optimization kernel and Section F.6 offers some conclusions and ideas for future work.

F.2 Previous Work

A lot of work has been done since the early eighties around tools for supercomputer programming.
These early tools need to be enhanced to follow the development of parallel computing. In this section, we
present some tools for the parallelization of applications written in Fortran 77 and HPF. For a comprehen-
sive survey of HPF tools, see [33].

One of the first projects around an “intelligent” editor for the parallelization of applications written in
Fortran77 was the ParaScope editor (PED) from Rice University [29]. PED was designed for shared memory
machines. It has been built from different other projects in Rice like R,, PFC, and PTOOL. PED allowed
the interrogation of a dependence graph whose size was limited by some filtering information. Several
optimizations were added to the tool like loop restructuring, loop parallelization, dependence deletion and
memory optimization. PED has been using an incremental analysis to update its text and dependences
panes.

The D-Editor [23] has been partly developed from PED also at Rice University. This editor has been
designed for the parallelization of applications written in Fortran D, a data-parallel language which turned
out to be a major input to the design of HPE The D-Editor contains an interprocedural analysis tool, the
Fortran D compiler and tools for automatic data distribution, data-race detection, static performance esti-
mation, and performance profiling. The graphical display is derived from PED and contains five panes :
an overview pane provides a summary of the loops and subroutines in the program (loops which restrict
parallelism are highlighted); a dependence pane displays the data dependences carried on the selected
loop ; the communication pane displays all the communications associated with the selected loop ; the data
layout pane displays the data decomposition information for each array of the loop ; and finally the source
pane shows the actual program code. The performance analysis environment Pablo has also been integrated
within the D-Editor [2].
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The Vienna FORTRAN Compilation System (VFCS) [37] is a source-to-source compilation system based
on Vienna Fortran, another extension set for Fortran, similar to FortranD and HPF. It contains a compiler, an
interactive performance estimator P3T [13], a performance measuring system (VFPMS), and a knowledge
based tool, eXPert Advisor (XPA) to help the user to insert the directives [5].

ForgeExplorer is an interactive parallelizer based on an interactive source code browser. It also performs
loop level transformations.

The Annai tool environment [14], developed by CSCS in a collaboration with NEC, uses MPI as the com-
munication interface for various distributed memory plateforms : NEC Cenju-3, Cray T3D, Intel Paragon,
and Unix multiprocessor/networked workstations. It consists of an extended HPF compiler (with exten-
sions for irregularly structured computations), a parallel debugger and performance monitor and analyzer,
designed with important feedback from application developers.

The Computer Aided Parallelization Tools (CAPTools [24]) is a recent set of tools developed at the Uni-
versity of Greenwich. This tool can show dependences using a graphical display [31]. The user can interact
inside the parallelization process by giving information about values or ranges of variables, by “deleting”
dependences, and so on. It has a Partitioner window to partition his code and data structures, a commu-
nication browser to see the generated communication routines calls. The code generated by CAPTools is
written in F77 and explicit communications routines calls.

Some other important compilation projects exist like SUIF and Paradigm.

The SUIF compiler [4], developed by the Stanford Compiler Group, is an infrastructure designed to
support collaborative research in optimizing and parallelizing compilers. Independently developed com-
pilation passes work together by using a common intermediate format to represent programs. The system
consists of a core library, support libraries, and a variety of passes.

The PARADIGM (PARAllelizing compiler for DIstributed-memory General-purpose Multicomputers)
project [6], in the Center for Reliable and High-Performance Computing at the University of Illinois at
Urbana-Champaign, strives to provide a fully automated means to parallelize programs for efficient exe-
cution on a wide range of distributed-memory multicomputers. To achieve this goal, the research being
performed in the PARADIGM project addresses automatic techniques for exploiting available data and
task parallelism for both regular and irregular applications. Through a combination of compile-time tech-
niques and run-time library support, the PARADIGM framework will be able to compile a wide range of
applications for execution on a variety of high-performance multicomputers.

F.3 The HPFIT Project

The development of a “real” application is conducted in a cycle involving several steps. This cycle is
shown on Figure F.1.

Tools can be designed to help users especially during the distribution phase. The programmer must
find a “good” distribution of data structures. This distribution should allow for the most parallelism and
should reduce the number and volume of communications to its minimum. This can be evaluated using
various tools (monitoring tools, profilers). From this distribution, the user is able to write HPF directives
in the declaration part of the code. These distributions should be propagated inside the routines. They
can sometimes differ and the programmer is allowed to redistribute the data inside the code. The code is
then compiled to obtain a source code in Fortran 77 with message-passing calls. It is sometimes possible to
modify the resulting code to insert optimizations. The code can then be executed or simulated. If traces have
been generated, the user can have an idea of the behavior of his code. The quality of the distribution (and the
optimizations) can be improved. This cycle can be executed several times to obtain the best performance.
One question is : how portable is the resulting code ?

One problem with HPF is that a HPF compiler is not required to follow the user’s advices (stated as
directives). This can be a problem because the user can have a false view of his code, “corrupted” by the
compiler. That is why we think that a strong interaction between the compiler and the parallelization tool
is necessary.

The aim of the HPFIT! project is to provide a set of interactive tools integrated in a single environment

!High Performance Fortran Integrated Tools.
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FIG. F1 - Development cycle of an application on distributed memory platforms.

\

to help users to parallelize scientific applications to be run on distributed memory platforms. This tool will
also be used as an interface to a large number of existing tools like HPF compilers, computation libraries,
simulators, data visualization tools, monitoring systems, profilers, and so on. These tools will interact in a
coherent environment. This environment should allow scientists with sequential source codes to produce
good parallel versions. Furthermore HPFIT will enable users to control the parallelization of their applica-
tion, in order to make it even better.

HPFIT will not be a black box taking a sequential application as input and magically producing an ef-
ficient parallel application as output. Rather, HPFIT will be a tool environment to support and ease the
development, tuning and maintenance of HPF applications. Though it is intended to be an open environ-
ment that allows integration of new tools, we focus in the first version on the following items :

— source editing with analysis information,

- dependence analysis of particular loop nests,

— automatic detection of INDEPENDENToops,

- automatic detection of pipelined computations patterns and code generation,

— support for data mapping (adding data distribution directives),

— visualization and evaluation of data mappings,

— interfaces to existing parallel libraries (e.g. ScaLAPACK, ...),

- interfaces to HPF compilers,

- simulation, monitoring, performance analysis and interface with profiling tools,

— compilation and execution interface.

The parallelized code is a data parallel program with explicit data mapping and explicit data paralle-
lism. As the data parallel paradigm might not be the most efficient one in some situations, we will provide
a library interface to codes written in other languages or other parallel programming styles, in particular
message passing libraries, and efficient parallel computation libraries.

As most applications considered for parallelization are written in Fortran, and a lot of work has been
done for automatic parallelization of this language, our target language is HPF. Since HPF provides the
EXTRINSIC mechanism, we can interface it with existing parallel libraries and other programming styles.
Some HPF compilers are being released. These compilers are designed by software companies (like pghpf
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from PGI, DEC and IBM HPF compilers, ...) or universities (like ADAPTOR from GMD/SCAI [12], VFCS
from the University of Vienna, sHPF from the University of Southampton, Fortran D from Rice University,
PARADIGM from the Center for Reliable and High-Performance Computing at the University of Illinois at
Urbana-Champaign, HPFC from the Ecole des Mines de Paris, ...). HPFIT should allow the user to use any
of these HPF or HPF-like compilers, and all those to come, even if most of them will not allow functiona-
lities like monitoring, and translation of sequential library calls. We intend to make use of this variety of
possible “post-compilers” in order to run the HPF codes on nearly all kinds of architectures. For instance
the ADAPTOR compilation system not only generates message passing code for MIMD system with distri-
buted memory, but can also generate code for MIMD systems with shared or distributed shared memory.
The first version of HPFIT (Version 1.0) will support two compilers : ADAPTOR from GMD/SCAI and
pghpf from Portland Group.

The HPFIT project is based on several other projects developed in different universities. At the moment,
4 research groups have decided to work on the project and to design shared interfaces. These groups are the
LIP in Lyon, France, the LaBRI in Bordeaux, France, the LIFL in Lille, France, and the GMD/SCAI in Bonn,
Germany. The developed tools can be used either in a stand-alone fashion or within the HPFIT interface.

F4 TransT OOL

TransT OOL [15], developed at the LIP, is the kernel of the HPFIT project. At the moment, it contains
a powerful editor (XEmacs), the F77 parser (from the ADAPTOR compiler developed at the GMD/SCALI
lab.), the dependence analyzer (Petit at the University of Maryland) and an optimization kernel. At the
moment, this kernel allows to do some parallelism detection and optimizations of pipelined computations
(see Section E5). TransTOOL provides an interface to be able to get the results of the parsing and of the
dependence analysis. Figure E.2 gives a snapshot of the TransTOOL screen.
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F.4.1 The XEmacs Editor

The sequential program source is displayed by an XEmacs editor. Using a powerful editor enables us
to share previously developed modes, to let the user configure its editor with his preferences (by using his
regular .emacs file). The TransTOOL edition is suited to the target language using a modified FO0 mode.
HPF keywords are highlighted. The user has the opportunity to click on a program component to trigger
some actions (like choosing a loop nest for the dependence analysis).

F.4.2 HPFize

Numerous applications have been developed on sequential, vector or parallel machines. These codes
have to be modified to be executed on distributed memory machines. Writing a program in HPF consists in
including compilation directives into the source code. It is interesting to simplify the way the user inserts
such directives. This is achieved using a graphical environment that is able to get the necessary pieces of
information from the user and from the program itself (after parsing and dependence analysis).

To summarize, the first functionality of this part of TransTOOL is to help the user to insert HPF basic
components into his “old Fortran” source code (and give defaults values as much as possible) : let the user
insert, with some assistance, directives and constructions like template, processor, align, distribute, forall
and calls to intrinsic procedures.

The main research topic around the semi-automatic insertion of HPF directives is the automatic distri-
bution of matrices using dependence analysis, previous distributions and target machine parameters.

F.4.3 Dependence Analysis

Dependence analysis is a crucial part of the semi-automatic parallelization of a code. Many tools for
dependence analysis have been designed and Petit [27] is one of them. Petit is a version of Michael Wol-
fe’s Tiny tool extended by the Omega Project at the University of Maryland. This tool uses the Omega
library [28] to compute the dependences.

We use Petit via its batch interface to compute the dependences of selected loop nests. The user can
choose a loop nest and ask for the dependences. Then, a graphical interface allows the user to see the
dependences, to select some dependences according to some criterion (for example, choosing only the flow
dependences), to see the sink and target of dependences on the editor.

When a loop nest is chosen, the corresponding sub-program is rebuilt from the Abstract Syntax Tree and
transformed into the Petit language using f2p.

Figure F.2 shows some of the dependence analysis windows of TransTOOL.

F.4.4 Parsing and Unparsing

ADAPTOR (Automatic Data Parallelism Translator) is a public domain compilation system developed at
GMD for compiling data parallel HPF programs to equivalent message passing programs [12]. The compiler
tools used for ADAPTOR can be retrieved and used to build other tools. In TransTOOL, we use the front
end which is able to parse a Fortran 77 source file, to generate the Abstract Syntax Tree (AST) and to unparse
the AST in a output file. We use the AST and the unparsing functionality to build the sub-programs for the
dependence analysis. If the source file is an HPF source code, the directives are also in the AST. We will use
them for the semi-automatic parallelization.

We also use ADAPTOR for the compilation of the code generated by HPFIT.

F.4.5 Translation of Calls to Sequential Libraries

Many real applications are currently using sequential libraries like BLAS or LAPACK. These libraries are
available on many existing machines. Parallel versions of these libraries are available, like the PBLAS [26]
and ScaLAPACK [25]. They are highly optimized, and reach very high efficiencies close to peak perfor-
mance together with a good scalability. It is impossible to reach the same efficiency using usual compilers.
A problem appears when one wants to transform a source code into HPF : these libraries are added during
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the link phase, and thus their source code is not available for automatic parallelization during the upstream
operations. Moreover, even if we have the source of the sequential routine, its automatic parallelization will
lead to poor performance. If a parallel version of the library exists, we must use it for the parallelization of
the application.

Some work have been done around HPF interfaces of parallel libraries [11, 32]. This is the best way
to obtain a portability between HPF compilers and parallel libraries. One of the goals of TransTOOL is to
offer the users the opportunity to automatically translate library calls from sequential to parallel versions
(via their HPF interfaces). Furthermore, TransTOOL will allow the user to insert redistribution phases if
it appears to be necessary. It will be a semi-automatic translation linked with the compilation. Moreover,
TransTOOL will allow to insert the source code of subroutines which do not have their parallel imple-
mentation. Then the source will be “HPFized” and distribution will be inherited. One problem is that HPF
handles many more distributions than those supported by ScaLAPACK. This will imply the development
of conversion routines.

F.4.6 Execution Interface

TransTOOL has been designed to be a self-contained environment. From the XEmacs editor, the user
should be able, taking a sequential Fortran 77 code, to semi-automatically generate an HPF source code,
to compile this code and to execute the SPMD program on the different machines he has access to. To this
purpose, we have designed an interface to give the parameters of the machines (how to start a computation
on the machine, how you allocate nodes, and so on), to compile the HPF code by choosing among available
HPF compilers, and to start the program on a remote machine.

F.4.7 Developer s Toolkit

HPFIT will provide a standard interface to many other tools used in the parallelization of applications
like performance monitors, traces analyzers, and simulation tools. In this first version, HPFIT is not a totally
new environment built from scratch but an “intelligent” interface into which existing or new tools are being
plugged. Thanks to this interfacing, we will be able to add new tools as they appear.

The TransTOOL Developer’s Toolkit (T?) [20] is the set of interfaces which can be used to build new tools
from TransTOOL, or to integrate new functionalities inside the editor. Currently, the Toolkit has interfaces
to:

— the XEmacs editor,

— the parser,

— the dependence analysis tool.

These interfaces are written with either C, TCL or Lisp, so they can be used in a C program, a tcl script
or within the XEmacs editor.

The first version (V 1.0) of TransTOOL and its developer’s Toolkit is available on the Web?.

F.4.8 Other Tools

HPFbuilder [18] from the LIFL which allows the user to insert HPF distribution directives using a gra-
phical interface will be integrated soon.

F.5 Optimization Kernel

Our main interest in TransTOOL is to validate recent research results on real applications, and to be able
to integrate the corresponding (limited size) software developments within existing, more complete and
more powerful tools.

2URL http ://lwww.ens-lyon.fr/"desprez/FILES/RESEARCH/S OFT/Tra nsTOOL/
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In this section, we present two research topics, i.e. parallelism detection for automatic generation of
independent  directives, and the pipelined loops detection for the automatic generation of calls to the
LOCCS library.

F.5.1 Parallelism Detection in Nested Loops

One of the objectives of the TransTOOL project is to develop and integrate strategies for transforming
automatically (or semi-automatically) sequential Fortran pieces of codes into codes with HPF directives.
The goal is to help the programmer to recognize parallelism at the loop level, and to automate the corres-
ponding loops transformations for him.

Since our target language is HPE, we have to keep in mind that only transformations that can be ex-
pressed in HPF and that can be efficiently compiled by an HPF compiler are suitable. In particular, we do
not currently address the following topics : parallelism exploited in doacross loops, software pipelining,
minimization of synchronization barriers : the first two topics because such parallelism cannot be easily
and efficiently implemented in a data-parallel language like HPF (it is easier to exploit it when compiling
HPF), the third topic because HPF codes are usually compiled into SPMD codes, synchronized by nature.

Our main goal is to expose to the programmer the maximal parallelism that can be detected. We are
interested only in understanding if a large set of independent computations can be detected, and if they
can be described by parallel loops. In other words, we aim at detecting loops that, in HPF, can be preceded
by the directive [HPF$ independent (denoted by DOPAR in the pseudo-code below).

F.5.1.1 Fine-grain Parallelism

In many applications, there is no need to use sophisticated dependence analysis techniques and pa-
rallelization algorithms for detecting full parallelism. A simple algorithm such as Allen and Kennedy’s
algorithm [3] is sufficient for most of the loops. Our implementation of Allen and Kennedy’s algorithm
will be used as a comparison base to evaluate how often more sophisticated algorithms are needed. In this
context, we recently showed that, as long as dependence level is the only information available, Allen and
Kennedy’s algorithm detects maximal parallelism (see [16]).

In some loops however, some more accurate representation of dependences is needed. Techniques based
on the hyperplane method [30] have been developed in the past so as to exploit a more accurate description
of dependences such as the description by direction vectors (see Wolf and Lam’s algorithm [36]). This last
algorithm is able to take into account the information given on all components of distance vectors (which
is not possible with Allen and Kennedy’s algorithm and level of dependences), but it is not able to use the
information concerning the structure of the dependence graph (which is the basis of Allen and Kennedy’s
algorithm for applying loop distribution).

We thus proposed a novel algorithm, Darte and Vivien’s algorithm, that combines and subsumes both
algorithms [17]. We found that this algorithm exploits optimally the structure of the graph and the infor-
mation on direction vectors. It is even optimal for a more accurate representation of dependences that we
called PRDG (polyhedral reduced dependence graph), roughly speaking, approximations of dependences
by non parameterized polyhedra, defined by vertices, rays and lines.

F.5.1.2 Medium-grain Parallelism

In HPE, codes with single innermost parallel loops are often not parallel enough to offer good perfor-
mance. In this case, the grain of parallelism must be increased, either by trying to move up the parallel loop
to the outermost possible level, or by using blocking (tiling) techniques.

We studied this tiling problem in [7] in the simple case of uniform loop nests, and it turns out that Darte
and Vivien's algorithm can be easily adapted to the tiling technique, as Wolf and Lam’s algorithm that was
developed with a “tiling spirit”. Actually, the detection of parallel loops and the detection of maximal tiling,
related to maximal sets of permutable loops, are two equivalent problems.

We are currently implementing in TransTOOL, a tiling version of Darte and Vivien’s algorithm : it in-
forms the programmer of the maximal parallelism he can hope, and proposes loop transformations that
reveal maximal parallelism, either as fine-grain parallelism, or as medium-grain parallelism.
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A lot of problems remain to be solved such as the choice of the block size for tiling, the choice of a
suitable mapping (with possibly temporary arrays), ... As the reader can notice, the above algorithms are
able to generate !HPF$ independent directives, but they do not address the generation of directives such
as align or distribute. This is still left to the programmer : he has to choose the mapping that exploits at best
the parallelism that has been detected.

We conclude this section by a very simple example, that illustrates the type of codes that can be gene-
rated by our parallelism detection algorithm. Figure F.3(a) shows the original code, and Figure E3(b) the
code with fine-grain parallelism. Note that Allen and Kennedy’s algorithm would also find one parallel
loop in this example. However, the fact that loop distribution can be avoided cannot be found by Allen and
Kennedy’s algorithm.

DOi=1,n
DOi=1,n b(i, 1) =a(i, 0) + b(i-1,0)
DOj=1,n DOPARj=2,n
a(i,j)=a@i-1,j+1)+b@i-1,n) a(i,j-1)=a(@-1,j) +b(i-1,n)
b(i,j) =a@,j-1) +b(i-1,j-1) b(i,j) =a@,j-1) +b(i-1,j-1)
ENDDO ENDDOPAR
ENDDO a(i,n)=a(i-1,n+1)+b(i-1,n)
ENDDO

(@) (b)

F1G. E3 - Original code and code with fine-grain parallelism

F.5.2 Detection of Pipelined Loops and Code Generation

Parallel distributed memory machines improve performance and memory capacity but their use adds
an overhead due to the communications. To obtain programs that perform and scale well, this overhead
must be minimized. Part of the job is devoted to communication libraries, which should provide efficient
point-to-point and macro-communications. Another important issue is to “hide” communication as much
as possible, by overlapping them with independent communications.

Asynchronous communications can be used to overlap computations and communications. The call to
the communication routine (send or receive) is then issued as soon as possible in the code. A wait routine
will then be used to check for the completion of the communication. Unfortunately, this is not always legal
due to the dependences between computations and communications. Pipeline schemes are also sometimes
found within the code. These schemes lead to a sequentiality in the execution of the whole algorithm.

The optimization we have added is what we call Macro-pipeline Overlap. There is a sequentiality within
the code (see Figure F.4 (A)). Processor P1 must wait for processor P0 to complete his computation and send
the results, to receive the data and start to work. As soon as it has finished, it sends the results to processor
P2 which, in turn, starts to work on the received data. The total execution time is higher than the sequential
one because of the overhead of the communications. One first solution is to start the communications as
soon as possible, i.e. as soon as one processor has computed one data item. For each data item computed, an
other one is sent to the following processors so they can start as soon as possible. This is called a fine-grain
pipeline ((B) on Figure F.4). This solution adds an overhead because of the communication startup time.
This time is usually higher than the cost of the communication of one element. Thus, the total time can be
higher than the one without pipelining. A trade-off has to be found which minimizes the execution time.
This is a coarse grain pipeline ((C) on Figure F.4).

A typical example of a code that may benefit from a macro-pipeline optimization is the ADI algorithm
given on Figure E.5.

We have designed a library for the optimization of pipelined computations called the LOCCS [19, 22] 3.
This library has been integrated in the ADAPTOR compiler [9] and we are currently working on its inte-
gration within TransTOOL.

3Low Overhead Communication and Computation Subroutines.
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FIG. F.4 — Macro-pipeline.
PARAMETERN-=...)
REAL, DIMENSION (N,N) = A, B
IHPF$ DISTRIBUTE (*,BLOCK) : A, B
! sweep along the columns
DOl =2, N
DOJ =1, N
Ald) = A1) - A(-
1,3)*B(1,J)
END DO
END DO
! sweep along the rows
DOJ =2, N
DOI =1, N
Al = A1) - A(J-
1)*B(1,J)
END DO
END DO

FI1G. E5 - High Performance Fortran Version of the ADI
algorithm.

Within ADAPTOR, the LOCCS library consists in a driver routine that takes as parameters information
about the distributed matrices, the distributed dimension(s) and a routine which is called at each step of
the macro-pipeline. Within the driver routine, choices are made to use macro-pipelining or not, and also on
the way of doing this optimization. There are several reasons to use a library instead of generating the code
directly in the SPMD source code. The first one is the ease of use for the programmer of an HPF compiler.
Instead of generating several lines of code, the compiler only has just to generate a subroutine call, to fill
the parameters and to generate the computation routine. Another reason is to be able to perform run-time
optimizations like, for example, the dynamic computation of the optimal grain size as a function of the
network load, cache effects, and so on.

We have obtained very good results using this library in the ADAPTOR compiler, for example with the
ADI algorithm given in Figure E5. There are two strategies to solve this problem, one using a redistribution
(transposition) and the other one using our library to have an optimized pipelined execution. The pipelined
execution achieves nearly the optimal speed-up and a dynamic data remapping is not necessary in this case.
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PARAMETERN-=...)

REAL, DIMENSION (N,N) T A B
IHPF$ DISTRIBUTE (*,BLOCK) : A, B
DOl =2, N I parallel execution
DOJ =1, N
Al = A1) - A(-
1,9)*B(1,J)
END DO
END DO

CALL DALIB_LOCCS DRIVER(BLOCK, 2, 0,
A(;,2:N), [0,1], B(:,2:N), [0,0])

EXTRINSIC (HPF_LOCAL) SUBROU-
TINE BLOCK(A, B)
REAL A(,)), B(:,)
IHPF$ DISTRIBUTE *(*,\BLOCK) : A, B
DO J=lbound(A,2),ubound(A,2)
DO I=lbound(A,1),ubound(A,1)
ALY = ALY - A(J-
1)*B(l,J)
END DO
END DO
END

FIG. F.6 — ADI algorithm using the LOCCS library.

Other applications of the library will be given in [10].

Now we need to integrate the LOCCS inside TransTOOL. First we need to find what Tseng called Cross
Processor Loops (CP loop) in [35]. A loop is a CP loop if it has a true dependence carried by the loop and
of course if its iteration crosses the processors boundaries. If a loop is a CP loop, one processor needs the
results of the computation of its left or right neighbor to start to work. However, telling that a loop is a CP
loop is not sufficient to say that a macro-pipeline execution is efficient. We are working on an algorithm
that detects loops that can benefit from a macro-pipeline execution.

For the computation of the optimal granularity of the pipeline, we will use the OPIUM library [21]. The
granularity will be also tuned at run-time depending of cache effects or network trafic (this has also been
suggested in [1] and [34]).

The user will be able to give to TransTOOL the parameters of the target machine (parameters of a com-
munication, costs of an average computation). These parameters will be used for the optimization of the
code generation. For example, when using PVM on a network of workstations connected via Ethernet, no
macro-pipeline should be used because of the huge costs of communication startups.

F.6 Conclusion and Future Work

In this paper, we have presented the first versions of the HPFIT project and of TransTOOL. HPFIT will
provide one interface to many other tools used in the parallelization of applications like performance mo-
nitors, traces analyzers, and simulation tools. In this first version, HPFIT is not a totally new environment
built from scratch but an “intelligent” interface into which existing or new tools are being plugged. Thanks
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to this interfacing, we will be able to add new tools as they appear.

Data distribution and alignment is one of the most important problem for the parallelization of applica-
tions using HPF. It is known to be a NP-complete problem in most cases; however for classical problems,
heuristics can be found that will lead to good performance. Thus we need to add a tool for semi-automatic
data distribution (within HPFize). Another problem that has already been raised by Kennedy et al. in [23] is
an interaction between the HPF compiler and the editor. This is not a trivial work as the compiler can make
huge transformations to obtain an SPMD code with local arrays and calls to communications routines.

Converting dusty F77 to Fortran 90 seems to be a useful intermediate step in the parallelization process.
For example, data parallelism could be expressed by array syntax and FORALL loops (Fortran 95). Part
of this work is clearly not our job (cleaning F77) but we could add some fonctionnalities to integrate F90
constructs in the HPFize part of TransTOOL, by taking those loops nests that can be transformed.

A lot of work remains to be done in the field of tools for semi-automatic parallelization of applications.
We hope that a collaboration between several laboratories will lead to an interesting and performant tool
made available to the whole community.
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G.1 Introduction

Parallel scientific applications can be divided in two major classes : data- and task-parallel applications.
The former consists in applying the same operation in parallel on different elements of a data set, while the
later is defined to be concurrent computations on different data sets. These two classes can be combined to
get a simultaneous exploitation of data- and task-parallelism, so called mixed-parallelism. In mixed-parallel
applications, several data-parallel computations can be executed concurrently in a task-parallel way. Mixed-
parallelism programming employs a M-SIMD (Multiple SIMD) or M-SPMD style. It is the combination of
both task-parallelism (MIMD or MPMD) and data-parallelism (SIMD or SPMD). The exploitation of mixed-
parallelism has many advantages. One of them is the ability to increase scalability because it allows the use
of more parallelism when the maximal amount of data- or task-parallelism that can be exploited is reached.
A good overview of this topic is given in [2]. Most of the researches about the simultaneous exploitation of
data- and task-parallelism have been done in the area of programming languages to give simple high level
accesses to more parallelism and in the area of compilers, where problems such as scheduling and alloca-
tion of concurrent data-parallel tasks are studied [15]. In [14], Ramaswamy introduces the Macro Dataflow
Graph (MDG) structure to describe mixed-parallel programs. A MDG is an direct acyclic graph where
nodes represent sequential or data-parallel computations and edges represent precedence constraints, with
two distinguished nodes, one preceding and one succeeding all other nodes. Once the MDG is extracted
from the code, an algorithm is applied to simultaneously place and schedule tasks on the computing re-
sources. Here, we use a sequential language like C or FORTRAN77 with high-performance libraries like
ScaLAPACK [5] and its associated communication library, the BLACS. Available processors are explicitly
divided into sub-grids that receive data-parallel operations to execute.

Matrix multiplication is the kernel of many scientific applications [12, 16] and several parallel imple-
mentations have been proposed, most of them using data-parallelism. Some algorithms substitute multi-
plications by additions and thus reduce the number of multiplications computed. Strassen [17] and Wino-
grad [8] are such algorithms that are best suited for a practical implementation. They have been extensively
studied on monoprocessor machines to increase the computational performances of numerical applica-
tions [1, 5, 10, 11, 18]. Several parallel implementations of both algorithms have already been proposed
but most of them use either data-parallelism [9] or task-parallelism [6]. Mixed-parallel versions [7, 14] also
exist. The former [7] uses a monodimensional distribution of the matrices and the later [14] is an application
of an automatic parallelization tool. In this paper, we consider an application of mixed-parallelism to the
first level of recursion of Strassen and Winograd matrix multiplication algorithms. Strassen (or Winograd)
algorithm is used at the higher level while standard high-performance level 3 PBLAS kernels are used at
the lower level.

Our motivation is to build efficient parallel algorithms for client-server applications. We assume that
matrices are distributed on disjoint grids of processors because of previous computations. A and B are two
square matrices of dimension M distributed on two separate square grids of processors of same size. We
want to compute the product C = AB with C distributed on the same grid as A. In such a case, there are
two “classical” ways to compute this product. First, we can redistribute B on the grid where A is located
and then compute the product on this grid. But this way, we use half of the amount of available processors.
Then, we can redistribute both A and B on all processors, compute the product, and then redistribute C' on
the grid where A is located. We propose a third and mixed way that keeps all matrices in place and evenly
distributes tasks (e.g., additions' and multiplications on matrix quarters) on the two grids.

The remainder of this paper is organized as follows. Section G.2 recalls Strassen and Winograd algo-
rithms. In Section G.3, we present our algorithms and their issues related to matrices distribution, tempo-
rary arrays reduction, and task placement. Section G.4 gives an evaluation of the theoretical costs of the
different algorithms. Finally and before a conclusion, we give, in Section G.5, our experimental results on a
cluster of PCs connected trough a Myrinet network.

n the following, we denote either additions or subtractions by addition.
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G.2 Strassen and Winograd algorithms

In 1969, Strassen [17] introduced an algorithm to multiply M x M matrices which has a lower complexity
than the classical O(M?) (Figure G.1(top)). It is based on a scheme for the product of two 2 x 2 matrices
which involves 7 multiplications and 18 additions instead of the usual 8 multiplications and 4 additions.
This scheme can be easily applied to 2 x 2 block matrices. To compute the product C = AB, if A and B are
distributed in square blocks of dimension M /2, we have :

( Cll 012 ) — ( All A12 ) ( Bll BIQ )
021 022 A21 A22 B21 B22

Strassen algorithm can also be applied recursively on square matrices of dimension M = 2 to finally
obtain a complexity of O(M'°8(")) = O(M?807). Several other variations of this algorithm allow to handle
matrices of arbitrary size, most of them are referenced or detailed in [11].

The Winograd variant of Strassen Algorithm, introduced in [8], uses the same number of multiplications
but reduces the number of additions from 18 to 15. This algorithm is presented in Figure G.1(bottom).

Input : Matrices A, B

T = A + Az Ts = B11 + B22
T = A1 + Aso T7 = B1s — Bos
T3 = A + Az Phase 1 Ts = B2y — B11
Ty = Az — An Ty = B11 + B12
Ty = A1z — Az T10 = B21 + B2a
Q1=T1%Ts Qs =T3 % Ba
Q2 =T % By Phase 2 Q¢ =Ty *To
Q3=Anx*Ty Q7 =Ts%Tho
Q4= Az xTy

T =Q1+ Q4 Cu=T1—-T
T3 = Qg =+ Ql Phase 3 Ciz = Qg + Q5
T =Qs—Qr Coi=Q2+ Qs
Ts=Q2— Qs Crp=T3—T4

Output : C = (Cs;)

Input : Matrices A, B

Ty = A1 + Aa Ts = Bia — B11
T, =851 —An Phase 1 Tg = By — T}
T3 = A — An T7; = Bz — B2
Th=A12— 5 Ts = Bo1 + T>
Q1 =An*Bn Qs =T+ T
Q2 = A12 ¥ B Phase 2 Q¢ = T4 * B2a
Q3=T1%Ts Qr = Az xTs
Qs=ToxTe
T1=Q1+ Q4 Cii=Q1+ Q2
T, = Q2 + Q5 Phase 3 Ci2 =T3+ QG
T3 =T1+ Qs Co=To+ Q7
Cor =T — Q3

Output : C = (Cyj)

FIG. G.1 - First level of recursion of Strassen algorithm (top) and its Winograd variant (bottom).
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G.3 Mixed parallel algorithms

To benefit from the use of mixed-parallelism in Strassen algorithm, the strategy employed keeps ma-
trices in place and distributes tasks among all of the processors instead of aligning matrices before com-
puting. As we use standard parallel numerical routines from ScaLAPACK, we need to keep the data dis-
tribution imposed by these kernels (full-block or block-cyclic distributions). Our goal is thus to reduce the
communications and to equilibrate as much as possible the computations among the processors. The two
grids (or contexts) where matrices A and B are distributed are square and of dimension p = 2¢. We consider
that they are sub-grids of a virtual rectangular grid of size p x 2p (thus we have a total of 2p? processors).
Processors of this global grid are row major numbered from [0, 0] in the upper left corner to [p — 1, 2p — 1]
in the lower right. We will keep this numbering from the whole context until the end of this paper.

G.3.1 Strassen algorithm
G.3.1.1 Data distrib ution

Strassen algorithm is better than standard matrix multiplication algorithm because additions and sub-
tractions of matrices can be computed in linear time without communications. But if we use a full-block
distribution, it introduces communications. To avoid them, all the processors involved in the computation
must own a part of each matrix quarters. The bidimensional block-cyclic distribution is the most adapted,
but the block size parameter has to be carefully chosen. M/2p is the maximum block size that allows the
local computation of all of the accumulations. Figure G.2 shows an example of the chosen data distribu-
tion when p = 2. For each block, subscript gives its matrix quarter and superscript corresponds to the
block-cyclic distribution.

0] o2 oo o3| o0] 02] 01| 03
A11 |[A12 |A11 (A2 | B1r |B12 |Bu |Br2
20| 2| 21| 23| 20| 22| 21| 23
Ao1 A |A21 A | Bor B [Bor |B
10 2] 12| 13| 0] 12| 12| 13
A1r |A12 |A11 |A12 | B11 |B12 |B1ur | B2
30| 32| 3| 33| 30| 32| 3| 33
Ao [Axp | Ao A | Bop |Boo [Bor | Boo
Context 1 | Context 2

00| 02| 01| 03
C11 [C12 |C11 |C12
20| 2| 21| 23
Co1 [Cp |Co1 [Co

10 12| 12| 13
C11 [C12 |C11 |C12

0| 32| 31| 33
Co1 [C |Co1 |[C2

FIG. G.2 — Mapping of matrices A, B and C on a 2 x 4 processor grid.

G.3.1.2 Temporary allocation and memory usage

The results of the 18 additions and the 7 multiplications of the Strassen algorithm must be stored in
temporary variables. If we consider the algorithm presented in Figure G.1(top), 10 temporary variables are
needed in phase 1, 7 in phase 2, and 4 in phase 3. As we compute the product of matrices of size M on
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square grids of size p x p, all these temporary variables are of dimension M/2p. So, this algorithm needs
21(M /2p)? temporary elements on each processor.

Now we propose an optimization of the number of these temporary variables in which we need only two
temporary variables (R' and T") on context 1 and three temporary variables (R?, $? and T) on context 2.
In Figure G.3, we propose an implementation of Strassen algorithm with this optimization. This algorithm
needs five temporary variables of size M /p in addition to the three matrices A, B, and C. But since the tem-
porary variables allocated in one context are not declared by processors of the other context, this algorithm
needs, at least, 3(M /p)? temporary elements on each processor.

Input : Matrix A, temporary variables R, T Input : Matrix B, temporary variables R?, 82,12
Store to : Computation Algorithmic var. Store to : Computation Algorithmic var.
C11 A11 + Aza T R, Bi11 + Baa Ts
R}, A21 + A2z T2 R3, Bia — Baa T
R, A1 + Aiz T3 RZ, Bo21 — Bi11 Ty
R%Z A21 — A11 T4 Sfl Bll + Bl2 TQ
R;l Alg — A22 T5 832 B21 + B22 T10
Send(R') Send(R?)
Tt Receive (R2) T2 Receive (Rl)
R%l 011 * Tlll Q1 R%l T121 * ng Q5
R;l Aqy * T112 Qs R%2 T122 * 5%1 Qs
R%Z Az * T211 Q4 R§1 T221 * sz Q7
C11 Ri, + Ri, T; 53, T3, * B Q2
Send(Ri;, R31) 5%, R, — R}, Ty
Ci2 4+ Caz  Receive (S2,,52,) Send(52,, 52,)
Cin1 Ci1 — Cia C11 T2 + T2  Receive (R};, R3;)
Ca1 Ca2 + Ri, Ca1 s3 T3 + B3, Crz
Cia 4 Cas  Receive (S2,, 52;) Ci2 & Cas sz, T2 + T2 — S2, + R2, Cas
Send (S%,, S2,)
Output : C = (Cj;)

FIG. G.3 — Mixed Strassen algorithm for Context 1 (left) and 2 (right).

G.3.1.3 Task placement

Once contexts are defined, tasks from the MDG have to be assigned as evenly as possible. In phase 1, all
operations concern only A or B. To keep locality, these tasks are mapped close to the data used. In phase
2, each multiplication involves one matrice coming from context 1 and one matrice coming from context 2.
When a computation needs data that are not distributed on the right context, copies of missing data from
one context to another have to be performed. As we work on an virtual grid of homogeneous processors,
the choice of the locations of the computations is driven by the reduction of communication cost.

Figure G.4(top) shows where allocations and copies take place in Strassen MDG. White circles represent
tasks executed on context 1, shaded circles represent tasks executed on context 2 and dotted lines mean that
there is a copy needed.

In order to reduce the communication overhead, we group messages together. For example, between
phases 1 and 2, we send R? in whole but only three quarters are needed. This avoids complicated accesses
in non contiguous memory locations and thus, reduces the number of communication latencies.

G.3.2 Winograd algorithm

The main idea of the mixed-parallel implementation is kept here for the Winograd variant. We use
the same contexts and the same data distribution presented in Section G.3.1.1. The number of temporary
variables is also the same. However, Winograd MDG (Figure G.4(bottom)) allows a task placement that
improves locality, especially during Phase 3. Computations are closer to data than in Strassen algorithm. So
there are less communications. There are only two exchanges of data between the two contexts (one more
copy in Strassen). Both algorithms for context 1 and 2 are presented in Figure G.5.
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FIG. G.4 - Strassen (top) and Winograd (bottom) MDGs with repartition of allocations and copies.

Input : Matrix A, temporary variables R, T! Input : Matrix B, temporary variables R?, 82,1
Store to : Computation Algorithmic var. Store to : Computation Algorithmic var.
Cin1 Aoy + Aag T R% B
R}, C11 — A T RZ, Ba1
Ri2 A11 — A21 T3 R§1 Bi2 — Bi1 Ts
Rél Agp — Ril Ty Sfl Bas — R%l Te
Send(R?) 52, Ba2 — Bia T7
T! Receive (R?) RZ, Boy — S%, Ts
R}, Aqp * TH Q1 Send(R?)
R}, Ci1 % Ty Qs T2 Receive (RY)
Ri, Az % Ty Q2 RY Tt * St Qs
Ry Az % Ty Q7 R, Ty + ST Qs
Send(R},, R3;) R3, T2 % Bao Qs
Cia + Cas  Receive (S2,, S2,) Ci2+T» TZ + T3 Receive (R}, Rj)
Cu RY, + Rl Cut S Ti + R, T
Ca1 Ca2 + R3, Ca1 S5, Si — R2, Tz
C2a Caz + R3, Caz S3 5%+ T3, Ts
Sf2 Sgl + Rg1 Ci2
Send(S%,, S2,)
Output : C = (Cjj)

FIG. G.5 — Mixed Winograd variant of Strassen algorithm for Context 1 (left) and 2 (right).

G.4 Time cost models

In this section, we evaluate the theoretical costs of Strassen, Winograd and PDGEMM algorithms with
different redistributions using the whole grid or only one sub-grid : mixed-parallel Strassen, mixed-parallel
Winograd, PDGEMM on the whole grid with ScaLAPACK redistribution, PDGEMM on the whole grid with
an optimized redistribution, and PDGEMM on one sub-grid with ScaLAPACK redistribution.
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G.4.1 Parallel machine and basic operations
G.4.1.1 Inter-conte xt comm unications

Our communication model is the classical 3+ L7 where 3 is the network latency, L the message size, and
T the inverse of the network bandwidth. As our network has a switch, we do not have to take contention
into account.

G.4.1.2 Computation routines

In [11], a classification of operations involved in Strassen algorithm is given because each operation
may have a different execution speed. We can distinguish two main operations : matrix multiplication and
matrix addition. As our implementation uses message grouping, we introduce a supplementary basic copy
operation. Let p,,, ps, and p. be the costs of elementary operations (respectively multiplication, addition,
and copy). As these factors are architecture-dependent, they are determined experimentally. Since our block
size is carefully chosen, we do not have cache effects. Now, we give detailed models for each of the basic
operations involved in our different algorithms.

Matrix multiplication In [4], a model is given for the ScaLAPACK function PDGEMMsed in our algorithm
to compute the seven matrix multiplications at the lower level. We have the following cost model :

2M3 . M
pm + M?(12 +17) (87 + B2),

Thrwe = 4+ ==
ult pq R

where R is the block size, and 7} and 3% (resp. 7} and B]) are functions of the grid topology and the

communication pattern for bandwidth and latency in a row (resp. column) broadcast.

Matrix addition (resp. copy) Because of our data distribution, all additions (resp.copies) are executed lo-
cally without communications as explained in Section G.3.1.1. The cost of an addition (resp. copy) is
given by :

2 M2
Tpda = p_zpa (reSP- TCopy = p_Qpc)

G.4.2 Mixed parallel Strassen algorithm

To perform inter-context communications, we use locally blocking send and receive functions. Because
the two sub-grids have same size and same shape, these copies induce communications between processor
pairs. Processor [MyRow, MyCol] from context 1 exchanges data with processor [MyRow, MyCol + p] in
context 2. We have two Send/Receive phases in each context and one communication from the second
context to the first one. We compute the total amount of data communicated : L = #M ? leading to a
communication cost model equal to :

-
TRedist = 5B + ?M2-
Then, there are 7 multiplications, 3 on the first context and 4 on the second one. As these products work on
matrices of size M /2, we have :

7
2

2 m M 3 M 2 M/2
Tt =4( e (5)" +2(%) 75+2M//2p 5)
= M b + 2M272 + 8pP3D.

Finally, there are 18 additions which are evenly distributed on both contexts. The critical path has 10
additions and 4 multiplications tasks. So, assuming that all operations work on matrices of size M /2, we

get:
(A)? 502
_ 2 —
Taqq =10 < 2 Pa) = 2—1)2/)51-
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If we sum these costs, we get the following cost model T's for Strassen algorithm :

M3
TSZ_ m+(M

P o 2r},’> M? + 8pBP + 5.

G.4.3 Mixed parallel Winograd variant

In the Winograd variant of Strassen algorithm, we introduce copies as we use message grouping. The
other basic operations are the same as in Strassen version. The only changes are the number of additions
and their order. If we look at both contexts algorithms (Figure G.5 (left and right)), we can define the fol-
lowing critical path : 4 additions and 2 copies on context 2, 4 multiplications on context 1, 4 additions on
context 2, and finally 3 adds/subtracts on context 1. Concerning communications, a better data placement
reduces the global cost. The total amount of data communicated (L) is equal to 3})&22, leading to the following
communication cost model :

3M2
TRedist = 4ﬂ + p2 T.

We have the same number of multiplications as in Strassen. We also have 11 additions and 2 copies. So,
assuming that all operations work on matrices of size M /2, we get :

1102 M?
Taga = Fpa and TC’opy = ?pc-

If we sum these costs, we get the following cost model Ty for Winograd algorithm :

Tw = %M3+(%+22;2+2—§+275)M2
+8pfE + 4.

G.4.4 Redistrib ution of A and B and PDGEMM multiplication on all processor s

We can split this algorithm in three phases : redistribution of A and B to the global grid, matrix mul-
tiplication on all processors, and redistribution of the result C' on context 1. Our first idea was to use only
ScaLAPACK routines (matrix multiplication and redistribution routines). ScaLAPACK redistribution rou-
tine [13] uses a caterpillar algorithm which is efficient for most redistribution patterns. But if we pay atten-
tion to source and destination distributions used in our algorithms, we can see an optimization is possible.
Indeed, only one half of each matrix, has to be effectively communicated, the other half being copied in a
temporary variable. Figure G.6 presents the caterpillar algorithm for a redistribution on a 2 x 4 processor
grid (surrounded communications are effective).

In section G.4.1.2, we gave a model for the matrix multiplication on a p x p grid. Here we have a p x 2p
grid. Using the same basic operations and communication models as for our algorithm and as the volume
of data communicated by each processor is M?/2p?, we have :

full grid . M3 2 [ 37+pc p 2p
Topogemm = HzPm+ M7 (2 + 1, + 7,

+38 +p(B3, + B;7)-

G.4.5 Redistrib ution of B and PDGEMM multiplication on one sub-grid

There are two steps in this algorithm : redistribution of B on the same sub-grid as A and multiplica-
tion on p? processors. Matrix C' will be distributed on the same grid as A. To redistribute B, we use the
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o 1 2 3 [ o 1 2 [2]
By 330

7 6 5 4 6 5 4

7 0 1 2 3] @ o [ [4
s 23]

6 5 4 3 5 43

6 7 0 1 [5] o 7 (o L8]

5 4 3 2 4 3 |2

s 6 7 o L7 5 6 7 (8]

4 3 2 1 3 2 1

FIG. G.6 - Communication pattern of the caterpillar algorithm.

Computation Comm unication
Algorithm M3 /p? ‘ M?)2p? M? ‘ Latency
Strassen Pm 5pa 7T/2p° + 278 8pBh + 50
(7/2p* + (2logp)/p)T (8plogp +5)8
Winograd Pm 11p4/2 + pe 37/p® + 272 8pph +4p
(3/p* + (2logp)/p)T (8plogp +4)B
PDGEMM/ut grid | Pe 3r/2p® + 2P + 15, p(B2F + B5) + 38
(3/2p* + (2logp +1)/p)7 | (p(2logp+1) +3)8
PDGEMM?##b—srid | 9, ] 7/p? + 278 2pB1 + B
(1/p* + (2logp)/p)T (2plogp +1)8

TAB. G.1 - Summary of computation and communication costs.

same model used to do inter-context copies in Section G.4.4. Each pair of processors uses a Send /Receive
operation to communicate M?/p? elements. The cost model for matrix product will be the one given in
Section G.4.1.2. Thus, we have :

sub—grid 2M3 T P 2 P
TppaeEmm = e Pm + 7 + 277 | M* + B+ 2pBy.

G.4.6 Analysis of the theoretical costs

Table G.1 gives a summary of the different components of the computation and communication models
for our algorithms and PDGEMM. In communication costs, values of Tr, Té)p, 7'31’, By, ﬁgp, and ﬁf,p can be
replaced by their actual values (assuming that we have a broadcast based on a tree), respectively log p*7/p?,
(logp+1)x7/p, logp+1)*7/p,logpx 3, (logp+ 1) * B, and (log p+ 1) * 8. For each the new communication
costs are given by the second lines of Table G.1

It is easy to see that the PDGEM M#¥—97id algorithm can not be as good as the others since its M3
factor is 2 times bigger. Concerning the 3 other algorithms, the main difference comes from the commu-
nication links latency. PDGEMM seems to be better but the volume of communications shows PDGEMM

2In this paper, log is log,



104

Mixed Parallel Implementations of Strassen and Winograd Algorithms

30

90

PDGEMM on 4 procs. Scal APACK redistribution ——

T T T T
PDGEMM on 8 procs. ScaLAPACK redistribution -+-- PDGEMM on 8 procs. Optimized redistribution —+—

Mixed Strassen on 8 procs. -+--

PDGEMM on 8 procs. Optimized redistribution -&--- 80 | A . a4
Mixed Strassen on 8 procs. -x | Mixed Winograd on 8 procs. -&
5 Mixed Winograd on 8 procs. -2~ B
70
20 4 60 | N

50
15

Gain (in %)

40

Time (in sec.)

10 b N

s " e
. 2
e 10
g
e e

0 == - L L L L 0 L L L L L L
128 384 640 896 1152 1408 1664 1920 128 384 640 896 1152 1408 1664 1920

Size of matrices Size of matrices

FI1G. G.7 — Comparison of the execution time of our different implementations of the matrix product ker-
nel (left) and gain obtained by Strassen, Winograd and PDGEMM with optimized redistribution over PD-
GEMM with the ScaLAPACK redistribution (Caterpillar) (right).

and Strassen are equivalent while Winograd is slightly better. We can also verify that the better locality in
Winograd induces less communication (1/2 * (M/p)?) than Strassen even if it increases the computation
cost.

G.5 Experimental results

Our experimentations have been done on a cluster of Pentium processors connected through a Myrinet
network. For communications, we used a version of the BLACS library on top of the BIP protocol. The
theoretical bandwidth is 125M B/s and the latency 6us. The PBLAS v1.0 library is used for lower level
matrix multiplications in Strassen and Winograd algorithms. Here we compare performances of all of the
algorithms presented in Section G.4.

Figure G.7(left) corroborates our theoretical analysis. Using ScaLAPACK only (PDGEMM and redistri-
bution), either on the whole grid or one sub-grid, is clearly less efficient than Strassen, Winograd or even a
PDGEMM implementation with an optimized redistribution. Notice that the optimized redistribution has
to be hand-coded which is not the case of a library implementation of Strassen or Winograd.

Figure G.7(right) presents the gains obtained by our different implementations over the pure ScaLA-
PACK matrix product on the whole grid.

G.6 Conclusion and future work

In this paper, we have presented a mixed-parallel implementation of Strassen and Winograd algo-
rithms in the scope of client—server applications (i.e., the different data involved in the computations are
already distributed on disjoint grids). We chose these algorithms because they are composed of several
data-independent tasks which are easier to schedule and place compared to a classical matrix multiplica-
tion. After giving details about the proposed mixed-parallel algorithms and their related issues, we gave
theoretical models of these algorithms. In order to validate our approach, we compared theoretical models
and experimental results of Strassen and Winograd with two data-parallel algorithms using the ScaL A-
PACK library and experiments corroborated our theoretical analysis.

Our future work consists in adapting our algorithms to heterogeneous platforms. We believe that mixed
parallelism techniques are better adapted to clusters of parallel machines than pure data-parallel versions.
Separate parallel implementation of a regular matrix product algorithm can be efficiently tuned on every
cluster depending of their capacity. The results presented in this paper give us the hope of obtaining good
performances on such platforms.
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H.1 Introduction

Interactive parallel tools have gained a large interest since the early nineties. Many parallel versions of
MATLAB are now available, both in public domain and in the commercial world. SCILAB [21], developed at
INRIA in the Métalau project, is a scientific software package for numerical computations in a user-friendly
environment. SCILAB is well spread in the scientific community and its popularity has been growing. It is
available on several platforms and runs under different types of operating systems (Unix and Unix-like OS,
Windows). There are several reasons for its success : (1) the language syntax is simple and easy to learn
(MATLAB-like syntax); (2) SCILAB includes hundreds of built-in mathematical functions and provides a
large choice of built-in libraries : numerical algorithms, control, linear algebra, signal processing, network
analysis and optimization, linear system optimization; (3) it offers a graphical interface; (4) it includes a
high level language with a syntax similar to Fortran 90 for matrix notations. Basic matrix manipulations
such as concatenation, extraction or transpose are immediately performed as well as basic operations such
as addition or multiplication. SCILAB also allows manipulations of high level data structures such as poly-
nomials, rational numbers, sparse matrices, multi-variables systems, lists, ... In one or two lines of code,
this language can express a computation that requires dozens of lines of C or Fortran; (5) SCILAB can easily
be extended with user-developed modules; (6) SCILAB can easily be interfaced with other languages like
C, Fortran or even Maple and Mupad ; (7) SCILAB can generate Fortran programs; (8) and last but not least,
SCILAB is a public domain software.

One possible drawback of using a sophisticated interpreter is that such a language can not give perfor-
mance as good as classical compiled languages. However, the performance loss (between 1 and 10 times)
should be opposed to the ease of development. All the advantages of tools like MATLAB can be found in
SCILAB. It is fairly easy to modify the code, change the size of data, print variables, or modify the problem
formulation interactively. The prototyping of code is then enhanced by this important feature. Moreover,
for coarse grain applications, the interactive aspect of SCILAB is not a limitation and the interpretation
overhead remains negligible.

SCILAB should be considered as a “real” language allowing the development of applications. Problems
developed by scientists using SCILAB have long execution times and a medium or coarse grain compu-
tation. Nowadays, many scientists tend to use a great variety of distributed computing resources such as
massively parallel machines, clusters of workstations, SMP machines, and piles of PCs. A SCILAB user who
would like to scale his/her application by going to a parallel machine or a network of workstations will not
be able to use the SCILAB language and he/she will have to re-program the whole application in C or For-
tran. Today’s supercomputers still lack of simple user interfaces and access procedures. Parallel computing
can then become tremendously tough to use and debug. Moreover, further developments on applications
will have to be coded in C or Fortran. Since the investment for researchers or scientists to use the super-
computer facilities in the traditional way is notoriously big, the user has generally to choose between two
alternatives : performance (in terms of computational and memory resources) or ease of use.

The idea of providing an access to parallel computing to MATLAB is not new. The first approach consists
in compiling MATLAB scripts to an other language (like Fortran [27, 36] or C [19]) and then to apply clas-
sical optimizations for its parallelization and use high performance libraries [13, 19, 35]. The advantages
of this approach are its high performance and the use of sophisticated compilation methods. However,
interactivity is lost and type inference is a tough problem. The second approach keeps MATLAB interac-
tive and provides parallel extensions. There are also two main approaches for the interactive version of
high-performance MATLAB tools. The first idea is to duplicate the tool itself (or a part of it) on every node
of the target machine [34, 38]. This approach has one advantage : the “master” process just sends regular
commands to the “workers” which in turn interpret commands and execute them before sending the result
back. Its main drawbacks are of course performance loss during command interpretations, heavy weight
processes, and the need of interfacing every library that need to be added to the tool. The second approach
is to rely on a parallel library server that waits for commands [11, 25, 31]. Another approach uses mixed
compilation and run-time techniques. MATLAB scripts are compiled into an intermediate language which
is executed on a virtual machine. This Matlab Virtual Machine from the Match project provides a high
performance runtime environment [4].

All these interactive projects use either Matlab duplication or servers. In the OURAGAN project, we
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aim to offer both approaches. OURAGAN is a join project between several laboratories in France! which
objective is to bring high performance and memory capacity to SCILAB users. This is a real challenge be-
cause we would like to hide as much as possible the use of parallelism to the user.

In fact, we target three different kinds of users. The first one is a parallel computing guru. He/she
knows how to write parallel programs using message passing or parallel libraries. He/she wants to keep
track of the way data and computations are distributed. For this user, we just provide interfaces to the
communication and computation libraries. The second kind of user is a scientist. “Parallel comput-what ? No
way ! I just need a 45 Gflops workstation with 30 GBytes of memory. Could you provide me with such PC ?”. For this
kind, everything is hidden in SCILAB. The tool decides itself whether or not it should (re)distribute the data,
start new processes, and so on. This is done in SCILAB by operator overloading. Finally, an intermediate
level is provided. This type of user wants to have a transparent access to the libraries as much as possible but
is also concerned by performance. He/she has a good knowledge of parallel computing and would like to
program his/her applications using message passing and computation libraries, but in a more transparent
way.

Figure H.1 shows the overall architecture of SCILAB,,. Section H.2 presents our first approach which
consists in duplicating SCTILAB processes on different processors. Then, these processes can exchange mes-
sages using either PVM or MPI (Fig 1-A). As we target linear algebra operations, we provide interfaces to
parallel libraries like ScaLAPACK [5] and its out-of-core prototype (Fig 1-B). Then, in Section H.3, we detail
our second approach, which uses computational servers. After presenting the interface between SCILAB
and NETSOLVE [10], we deal with our developments to enhance NETSOLVE concerning data persistence,
resource location, performance evaluation and communication layers (Fig 1-C). Then, we present two target
servers we interfaced with this system : PASTIX (Fig 1-D), which is a parallel direct solver for sparse systems
and VISIT (Fig 1-E), a visualization tool for distributed data. Finally, we give a conclusion and present our
future work in Section H.4.

|
N
(E)
Visit
NetSolve
Scilab processes
" Vo I
__ Server i Server ! PaStiXsolver |
(A) (8) (©) (D)
Duplication ScalLAPACK NetSolve PastiX

Out Of Core

FIG. H.1 - The different approaches and developments around SCILAB,, in the OURAGAN project.

H.2 SciLAB Processes Duplication

The first approach of our Scilab parallelization allows the user to start other remote SCILAB sessions
from the SCILAB window, make them communicate and use parallel numerical libraries.

ISupported by INRIA.
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H.2.1 Message Passing Interfaces

To be able to use SCILAB as a tool for parallel computing, the first step was to provide a “regular”
message passing interface for the user. This was done by including the standard PVM [20] interface within
SciLAB. This interface allows users to develop parallel programs and benefit from all the main features
of SCILAB that simplify numerical computing (as they were listed in introduction). We choose PVM to
implement the first message passing interface since it allows to dynamically spawn new processes which is
not the case with MPI [37]. Nevertheless, we also added a message passing interface based on MPI. Using
MPI implies that the user has to decide at the beginning of its SCILAB session the maximum number of
processes he/she will use.

These “regular” message passing interfaces provide low level functions to get the best performance,
but are reserved to “expert users”. A SCILAB,, instance is able to communicate and interact with
other SCILAB,, instances and the user can send data of any types (including matrices, lists, functions,
...) using PVM (or MPI) commands. These first low-level interfaces provide a tool to easily run pa-
rallel algorithms without loosing the power and ease of SCILAB. Indeed, one SCILAB,, instance may
send any kind of sub-matrix of a matrix A (not only consecutive blocks) with the following instruction
pvm_send(dest,A(1 2 N, )tag) or may define a function f and send it to another instance that
will be able to execute it on its own data : deff(’[x]=f(y)’,’x = 1/ly") , pvm.send(dest,f,tag)
Among other performance results, [14] shows that (1) when the user sends a full matrix, performances
obtained by SCILAB,, are as good as a program written in C, and the interpretation of the call does
not deteriorate the performance; (2) an overhead is introduced by sending sub-matrices, due to me-
mory copies that take place in both sender and receiver SCILAB,, processes. Indeed, an expression like
send(A(1 :2 :100,2 :2 :100),...) send a 50 x 50 matrix which is not contiguous in memory, so
the send() routine must copy all elements in a contiguous buffer before sending the data.

H.2.2 Parallel Libraries Interfaces
H.2.2.1 Parallel Linear Algebra Package

In order to keep a good portability, interoperability and efficiency, SCILAB,, also integrates interfaces to
parallel linear algebra libraries like PBLAS, SCALAPACK and the BLACS communication library. Thus,
the user may distribute his/her matrices and run parallel routines in order to achieve good performance.
As we said above, this level remains dedicated to “expert” users that have good parallel computing skills
and that are familiar with the design of the SCALAPACK interface. SCILAB,, simplifies calls by enabling
default arguments, calling automatically the corresponding complex or double functions by checking the
type of parameters, ... The following SCILAB,, script illustrates the use of the BLACS routines and gives
an example of the function pblas _gemmthat compute C' = a4 * B + SC. This simple example is executed
by all SCILAB,, processes in a SPMD manner. The following script begins by initializing a 2 x 2 grid of
processors. Once the initialization of each local part of the distributed matrices A, B and C'is done, the call
to the parallel routine pblas _gemmcan be executed. The SCILAB,, APl is very similar to the Fortran one.
Note that some parameters are omitted and are set to default values (transposition of matrices, row and
column index of the sub-matrix to operate, ...).

[mypnum,nprocs] = blacs_pinfo();
blacs_setup(4);

icontxt = blacs_get()

ictxt = blacs_gridinit(icontxt,'R’,2,2);
M=1000;K=1000;N=1000;MB = M/2; NB=K/2;

desc_A = sca_descinit(ictxt,M,K,MB,NB,0,0,M);
desc_B = sca_descinit(ictxt,K,N,MB,NB,0,0,K);
desc_C = sca_descinit(ictxt,M,N,MB,NB,0,0,K);

A = rand(M/2,K/2)
B = rand(K/2,N/2)
C = zeros(M/2,N/2)
pblas_gemm(M,N,K,1,"A",desc_A,"B",desc_ B,0,"C ", desc _C)
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Nevertheless, some numerical applications are limited by the physical memory size. To break this limit,
out-of-core techniques may be employed like using disks as an extension of the main memory. So we add an
interface to the SCALAPACK out-of-core prototype.

H.2.2.2 Out-of-Core Extensions

The benefit of this method is to handle huge matrices on a cheap hardware. As we are developing an
out-of-core extension of SCILAB,,, users can work on matrices that do not fit in memory. Depending on the
data size, SCILAB,, would spawn automatically either the in-core program or the corresponding out-of-core
program, without script modification.

IC 16x1

Mflops =

_ OoC16x1

1500 / 0oC 4x4
1250 // ’
1000 1/
750
500 OoC 1x16
10000 20000 30000 40000 50000 60000 70000 80000 90000 10000
Matrice order

F1G. H.2 — Theoretical performance of the LU factorization.

SCALAPACK provides some out-of-core functions [18] which we interfaced with SCILAB,, by adding a
new data type to take matrix distribution over disks into account. The performance of the SCALAPACK
out-of-core functions were evaluated before their integration into SCILAB,,. For instance, Figure H.2 shows
theoretical results of the out-of-core (OoC) left-right looking algorithm for the LU factorization (on a cluster
of 16 Celeron PCs with 96 MB/node) and compares it to theoretical performance of the right-looking in-
core (IC) algorithm (with no physical memory limit). Performance are shown for 3 kinds of topologies : one
row of 16 processors (1 x 16), a 4 x 4 grid, and one column of 16 processors (16 x 1). This figure outlines
the impact of distribution on performance. For out-of-core computations, the best distribution is a column
of processors where the communication overhead of the algorithm is avoided. This out-of-core function
was also modified to allow the overlap of I/O by computation. Then, the performance is very close to
the theoretical performance of the in-core algorithm on a (virtual) machine with no physical memory limit
(see [9] for details).

Table H.1 gives performance obtained for the out-of-core LU factorization in SCILAB% on an Alpha
cluster with 6 processors and 768 MB of memory. The overhead of the interface is negligible. In brief, the
startup time relative to the time of the call to the out-of-core function by SCILABY%¢ is just some seconds
versus several hours or days to execute it.

Unfortunately, only few out-of-core routines are provided in SCALAPACK. We developed some original
functions like the out-of-core identity matrix generator, the out-of-core matrix comparison and the out-of-core
matrix inversion [8].

Whereas good performance is achieved when computing bound operations like matrix factorization, the
I/0O overhead can not be hidden for element-wise operations of SCILAB. Consider the following expression :
A=sin(A)+cos(B)+sqrt(A) where A and B are out-of-core matrices. During the evaluation process, the
A matrix is read two times, big temporary matrices are generated and re-read, using large space on disk.
The I/0O cost is greater than computation cost. A solution to reduce I/O cost and avoid generation of big
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Matrix order | Matrix size | Execution time | Performance
12288 1.2GB 23m15s | 886 Mflops
21504 3.7GB 1h 09m | 1601 Mflops
27648 6.1GB 2h47m | 1406 Mflops

TAB. H.1 - Performance in Mega Flops (Mflops) of SCILAB7%¢ LU factorization.

temporary matrices is to split out-of-core matrices A and B into small blocks in such a way than the whole
expression is evaluated in memory block per block.

H.2.3 Semi-transparent Use of Parallel Computing Using ScCILAB/,

Even if some specialists want to access an expert level, many SCILAB users do not want to spend time
learning parallel programming but their main goal still remains to run their programs which become more
and more time and memory consuming. In order to provide efficient parallel linear algebra operations
inside the SCILAB console but dealing neither with message passing routines nor specific SCALAPACK
routines, we decided to add a new distributed type inside SCILAB. This level of transparency is motivated
by the need to bring the benefits of interactive environments to supercomputers while maintaining the
efficiency and power of highly optimized parallel computational libraries. From the user point of view, the
fact that a scalar matrix is distributed or not, will not influence the way of writing SCILAB programs. The
only additional commands are :

Sci p. nit : initializes the grid, that is, the number of processors that the user will use for this session.
Note that a configuration file can be used to specify the default configuration (number of hosts and
name of the computers) ;

Sci pd ni t _di st : initiates a specific distribution if the user does not want to use the default one;

sci pdi stribute: is the main routine that will distribute a scalar matrix, defined into the SCILAB
console or stored on a file system, on the other SCILAB,, processes that were previously started by the
scip .init  function.

We overloaded common SCILAB functions and operations so that they work with the distributed type.
Thus, operations on distributed matrices will be executed in parallel. At the moment, all operations that
have their counterpart in the two parallel linear algebra libraries, PBLAS and SCALAPACK, are overloa-
ded. The main point is that the user is still able to use the SCILAB classical matrix notations and operations
to write parallel programs.

Of course, all SCILAB functions working on scalar types are not overloaded. When an operation is in-
tended on a distributed type whereas there is no parallel function corresponding to it, the user may choose
between several modes : the first (and simplest) one, is to generate an error; the second one, is to systema-
tically gather the distributed matrix inside the SCTLAB console (if it fits in SCILAB memory) and execute the
operation in it. The other case is when an operation involves both scalar and distributed data. Once again,
the user may choose between several modes : to generate an error; to gather the distributed matrix or to
propagate the distribution. The last choice enables to only distribute the main matrix once and then, the
interpretor will automatically propagate the distribution used to the other data involved in further parallel
operations. The following example shows how to perform a very simple matrix multiplication ona P x @
grid of SCILAB, processes. In this example, the distribution used is a bidimensional block-cyclic one with a
block size fixed to M B x N B but the user may have used default values. Then, scalar matrices A and B are
distributed and the matrix multiplication is done by using the regular * symbol inside the SCILAB console.

CTXT = scip_init(P,Q);

DIST = scip_init_dist("CC",0,0,CTXT(3),MB,NB) ;
A = rand(M,N); B = rand(M,N);

MatA = scip_distribute("A", DIST);

MatB = scip_distribute("B", DIST);
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Res = MatA(1:1000,1:500)*MatB(1:500,1:1000);
size(Res)
ans = 1000. 1000. !

Table H.2 lists functions that support overloading for distributed matrices. As we notice on the example
above, setting and retrieving array sections (using only consecutive blocs) also work transparently for dis-
tributed matrices. The overloading of major element-wise functions like cos, sin is done and easy to
implement.

Funct. Description Funct. Description
+,—,*,.%,./ | Classical matrix binary op. || size Size of an object
chol Cholesky decomposition hess Hessenberg form
inv Matrix inverse linsolve Linear eqn. solver
lu LU factor of a Gauss. elim. || gr QR decomp.

rcond Inverse condition number || schur Schur decomp.
spec Eigenvalues svd Sing. value decomp.

TaB. H.2 - Overloaded distributed matrix operations in SCILAB,.

Figure H.3 plots performance obtained using the standard * operator inside the SCILAB console on dis-
tributed matrices. The x-axis represents the size of the matrix and the y-axis the time to execute 2 matrix
multiplications since we perform Res=A*B*C where A, B and C' are square matrices. These tests were per-
formed on a SGI Origin2000. The curve plotted with crosses (— + —) is obtained by doing the computation
on a single node, i.e., by using the sequential scalar operator * in SCILAB. The curve plotted with (— x —) is
obtained by using 4 processors and finally, the curve plotted with stars (— % —) is obtained by running the
test on 16 processors. The main important point is that it is possible to obtain a very good speedup on such
a simple operation that appears many times in SCILAB scripts. Thus, it is worthwhile to use the distributed
scalar type when dealing with matrix of size greater than 200 x 200. The overhead introduced by the dis-
tributed type, i.e., sending the instructions to the set of slaves, is not really a problem when computation
complexity (and memory capacity) becomes the real burden.

H.3 Network-Enab led Servers

In the previous section, we have presented our first apprach to parallelize SCILAB. But this approach
is reserved to expert users. In this section, we present a more transparent way to access parallel resources
from SCILAB, using computational servers.

Due to the progress in networking, computing intensive problems in several areas can now be solved
using networked scientific computing. In the same way that World Wide Web has changed the way that
we think about information, we can easily imagine the types of applications we might construct if we had
instantaneous access to a supercomputer from our desktop. The RPC approach [8, 9] is a good candidate to
build Network-Enabled Servers (NES) environments on the Grid. Several tools that provide this function-
nality exist like NETSOLVE [10], NINF [13], NEOS [11], OVM [7] or RCS [2].

This approach leads us to integrate an interface to NETSOLVE which is a client-agent-servers applica-
tion that enables users to solve complex scientific problems remotely by accessing hardware and software
resources distributed across a network. A load-balancing policy is used by NETSOLVE to ensure good per-
formance by enabling the system to use available computational resources as efficiently as possible. The
SCILAB-NETSOLVE interface allows the user to send blocking and non-blocking requests to the NETSOLVE
agent which plays the role of a resource broker.

Figure H.4 plots performance obtained using non-blocking NETSOLVE routines to solve several eigen-
values problems on a set of matrices. The matrix size was fixed to 500 x 500. SCILAB was running on a Sparc
workstation but one of the server was running on an Origin2000. The x-axis represents the number of calls
and the y-axis the time. The curve is linear which in fact corresponds to the time to send and receive the
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using the distributed overloaded operator x. ScILAB-NETSOLVE interface.

results since the server was able to accept all the calls in parallel. It shows that, from SCILAB, the user is able
to obtain high performance almost without having to deal with parallel computing.

H.3.1 Data Persistence and Data Redistrib ution

When we interfaced SCILAB and NETSOLVE, we have been confronted by two drawbacks of NETSOLVE
concerning data persistence and data redistribution. When a server has computed a result, this result may
be used again as an input parameter of another request on this server. Hence, it can be useful to use data
persistence, i.e., cache data on this server. Moreover, this result can also be involved in a computation on
another server, in that case it can be useful to redistribute data from server to server. However, NETSOLVE
does not implement data redistribution between servers : when a server has completed a computation, out-
put objects (results) are retrieved by the client. Therefore, many useless communications could be avoided.
This problem as been tackled with the new request sequencing feature [3]. However, the current request
sequencing implementation does not allow to handle multiple servers. Moreover, our data persistence im-
plementation allows the client to manage its distributed data and their availability on different servers. We
have modified NETSOLVE in order to implement data persistence and redistribution between servers. This
has been done in a transparent way, with no change to the API. Existing client programs will work normally
after recompiling. Moreover, our implementation is stand-alone : data management works without the help
of any other tool. In order to implement this, we modified NETSOLVE servers so that, when a computation
completes, data stay locally on the server. The server is waiting for orders from the client. There are five
orders a server may receive : exit means that the server terminates and all its local data are lost; send one
output object, the server sends one of its results either to its client or to an other server; send one input object,
the server sends one of the problem parameter to its client or to an other server; send all output objects, all
the results are sent to a client or to an other server ; send all input objects, all the problem parameters are sent
to a client or to an other server.

Communications between servers are implemented sockets. When a client wants two servers to ex-
change data, a socket is established between these servers. We add new functions and data structures to
the NETSOLVE client library to allow the use of data persistence and redistribution features. When a client
wants to use a remote data, it has only to specify the server session and the object number and type for this
session.

Figure H.5 shows how a complex matrix multiplication between two distant cities may benefit from
data redistribution. In this experiment, we show the time to execute a complex matrix multiplication where
computation have been decomposed as follows : (1) Cp, = A, x B,; (2) Cr, = A; x B;;(3) C;, = A, x B;;
4)Ci, =A; xB,;(5) Cr =Cp, —Cyy; (6) C; = Ciy +Cs,. Where A, (resp. B, and C,) is the real partand A4;
(resp. B; and C;) the imaginary part of complex matrix A (resp. B and C). The four matrix multiplications
were computed on one node of the IBM SP2 of the LaBRI in Bordeaux, while the two matrix additions were
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performed locally in Nancy. One shall remark that steps 1 and 2 can be executed in parallel as well as steps
3 and 4. With data redistribution, objects A4,, B,, A;, and B; are not sent back to the client between steps 1-2
and steps 3—4. We see that in that case computations are 1.77 faster for matrix of size 1024 than the same
computation performed without data persistence and redistribution.

H.3.2 Software Resources Location and Performance Evaluation

To schedule computations over servers, we are facing two problems : first, we have to find which re-
sources are able to satisfy the request, and then, we have to choose the best suited one by evaluating the
performance of each proposed solution. To solve the first problem, we are developing a library called SLIM,
Scientific Libraries Metaserver. Its goal is to link a problem description to implementations available on
servers. In most cases, it is not a one-to-one mapping : a single problem can be solved by many implemen-
tations from several libraries, while an other problem may need more than one computational step to be
solved. For example, if a user wants to solve a system of linear equations represented by sparse matrix,
depending of the data themselves, it can be solved by a direct solver or by a preconditioner followed by a
iterative solver. Thus, sequential and parallel implementations may be available. In the first prototype, we
decided to use the name of the SCILAB built-in functions as problem description language. Even if this ap-
proach is satisfying in this context, it lacks of generality, and we are currently working on a better solution
based on the Guide to Available Mathematical Software (GAMS) problem taxonomy [3].

Once SLIM has found which implementations are able to solve the given problem, the system has to
evaluate the performance of each one for each machine providing it. The NETSOLVE agent scheduler has
some lacks in this domain that we propose to fill. First, it considers that the characteristics of the link (band-
width and latency) between a client and a server are the same as those of the link between itself and this
server. Then, the time complexity of problems must be expressed through a simple expression such as az?,
where a and b are constants defining the complexity, and z the size of involved data. To improve the know-
ledge of the metasystem needed by the scheduler to choose the best possible server, we are developing a
library called FAST, Fast Agent System Timer [17]. FAST is composed of several layers and relies on low
level software, as shown on Figure 1.2. To address the drawback of the network performance forecast in
NETSOLVE, FAST uses the Network Weather Service (NWS) [14]. It is a distributed system that periodi-
cally monitors and dynamically forecasts performance of various network and computational resources.
Furthermore, the dynamic data acquisition module of FAST enhances NWS. If there is no direct NWS
monitoring between two machines, FAST finds the shortest path between them in the graph of monitored
links. In this case, the estimated bandwidth is the minimum of those of the path. For the latency, the sum
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is taken. Concerning the second drawback, FAST includes routines to model the time and space needs of
a computation on a given machine as functions of the parameters of the computation. For that, it fits data
resulting of benchmarks (realized at installation time with no external load) by linear regression using the
least square method. The result is a polynomial function which order is automatically chosen to minimize
the error. This allows to take cache and swap effects in account. Furthermore, as the modeled function is
more complex, it is more expressive. To store these static data, FAST uses the Lightweight Directory Access
Protocol (LDAP) [7]. LDAP was chosen for its optimizations to read and search data. Furthermore, LDAP is
widely used in the Grid community. Finally, FAST also includes a user API, which is a set of functions that
combine static and dynamic data acquired from lower level components to produce ready-to-use values.
These functions allow the scheduler to get the time to move an amount of data between two computers and
the predicted time to solve a problem on a computer taking its actual workload into account.

Figure 1.2 shows an overview of SLIM, FAST and their interactions with a client application. The sche-
duling is done in several steps : (1) the client gives the problem description to SLIM. (2) SLIM contacts the
database system and searches out the set of implementations which are able to solve the submitted problem.
For example, if the problem is a multiplication of dense matrices, the DGEMNunction of the SCALAPACK
library would be a candidate. (3) This set is then sent to FAST to forecast the execution time of each solution
for each server. (4) FAST acquires the static data from the database and (5) the dynamic data from NWS.
(6) Finally, these data are combined by FAST in a list of couples {implementation ¢ on server s; estimated
time ¢t} and returned to the calling application. Then, the client uses this result to choose which server to
contact.
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: ' e — R machine :
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FIG. H.6 — Overview of SLIM and FAST.

H.3.3 CoRBA Interface to Parallel Servers

Communications are a key issue in NES environments. The communication layer should provide both
good performance and ease of development. The CORBA norm, defined by the Object Management Group
(OMG), aims at providing a standard and transparent interface for the development of object oriented
distributed applications over heterogeneous networks. CORBA systems are built around an Object Request
Broker (ORB), which is a communication bus between CORBA objects. Communications are initiated by
method invocations between objects which can be located on different hosts.

In this section, we give a brief overview of CORBA systems. Then, we discuss the integration and the
definition of new services in order to provide metacomputing domain CORBA services. Our current im-
plementation still relies on the NETSOLVE architecture (scheduler, problem description) but it becomes a
part of the CORBA services. Thus, we define a new CORBA interface between NETSOLVE components to
take advantage of CORBA high level features over the socket interface. We propose a mapping of these two
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communication layers on a common interface so as to make them accessible in the same way. The example
in section H.3.3.3 shows how works a metacomputing session using our platform.

Some goals of the CORBA norm are : to allow a high transparency level in the communication primitives
of an application ; to normalize the features of object oriented distributed systems ; to allow interoperability
between these systems (i.e., transparent communications between different CORBA implementations); to
provide a distributed programming environment that is independent from the language (i.e., communi-
cations between applications written in different languages are transparent); to normalize most common
system processes into CORBA services; and to reduce the development time for distributed applications.

H.3.3.1 CoRBA Services for Metacomputing.

As the CORBA norm provides a transparent way to implement distributed application, its use in the
domain of metacomputing should be considered. Existing metacomputing platforms are usually subject
to very frequent experimental modifications and features add-ons. CORBA systems allow, with a very low
communication time increase, a great ease of development and a greater maintainability of the code. Mo-
reover, when communicating between heterogeneous architecture, CORBA can even be faster than XDR
[16]. As a matter of fact, our tests [1] have shown that communication times with an ORB are equal to those
with standard sockets plus a constant value. Table H.3 shows the time necessary to some free ORBs to send
various sizes of characters arrays on a local network. Performance of the sockets library in the same condi-
tions are given too. These results confirm that the overhead induced by CORBA is not significant when the
data amount grows.

size in bytes | 10 100 1000 10000
Mico 0.65ms | 0.73ms | 1.55ms | 9.83 ms
OmniOrb2 0.56ms | 0.68ms | 1.4ms | 9.81 ms
OrbAcus C++ | 0.57ms | 0.67ms | 1.54 ms | 10.26 ms

OrbAcusJava | 1 ms 2 ms 6 ms 47 ms
Jonathan 1.06 ms | 1.23ms | 3.37 ms | 24.3 ms
Sockets 026 ms | 0.35ms | 1.24 ms | 9.67 ms

TAB. H.3 — Communication times of some free ORBs compared with the socket library.

Thus, even if slightly better performances could be obtained by writing optimized socket applications,
CORBA seems to be a good choice for the development of a metacomputing platform. It is well suited for
resource allocation in distributed systems, which is a critical point in metacomputing. We thus propose that
CORBA systems are an interesting alternative for the development of a metacomputing platform.

On such platforms, data can be moved across the network without the client being notified of their new
location. No common service is still able to perform this kind of function in a metacomputing context. Mo-
reover, the existing services are too complex to be customized to satisfy our specific needs. A set of specific
services should be developed for metacomputing. We have specified a set of metacomputing services and
propose to interface them with the SCILAB,, software. We describe below each of these services and we
give an overview of how they could work together to allow a transparent metacomputing process.

Our metacomputing system is composed of three kinds of entities : SCILAB,, clients; computational
servers; and metacomputing services. Clients are SCILAB,, processes embedded in CORBA objects. Com-~
putational servers are numerical libraries with a CORBA frontal which allows remote invocations. Clients
never send their computation requests directly to servers. The metacomputing services are in charge to
transmit these requests to the appropriate servers. For each computation, a server is chosen to achieve best
performances. We define two main metacomputing services, which are implemented as CORBA objects.

The trading service, or trader, is responsible for the servers pool management. It keeps up to date a table
of all the available servers and their features (e.g., what problems they are able to solve, CPU, memory, ...).
A client sends its computation request to the trader which chooses a server and transmits the request to
it. In order to provide good performance, the trader takes many parameters into account. In the best case,
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it tends to choose a server which is idle and which already holds a data involved in the computation. If
we are not in the ideal case, the trader chooses a server which minimizes the sum of communication and
computation time. The scheduler of our metacomputing platform is thus part of our trading service.

The location service is responsible for keeping track of the data migrations across the platform. Every
data is associated with a unique identifier or reference. The location service keeps up to date a table which
associates each data identifier with the server or client owning it. This service should be warned of every
data migration. Then, it is able to be called by a client to retrieve a result or by the trader when data locations
are needed to choose a server.

H.3.3.2 Integration into NETSOLVE.

In order to benefit of the existing developments made over NETSOLVE in the OURAGAN project, we
choose to integrate our metacomputing services into NETSOLVE. The resulting version of NETSOLVE should
be able to use both sockets and CORBA communication layers. For technical reasons, our two services are
included in the same CORBA object which is built upon the NETSOLVE agent. The resulting CORBA service
is called metacomputing agent as well.

In order to implement our CORBA layer in parallel with the existing socket layer, a common interface has
been designed. This interface is a set of functions which can be executed by both layers [15]. This interface
acts like a wrapper which allows the developers of the core of the agent to use the two communications
layers in the same way. This common interface is designed to allow data persistence and further extensions
like data duplication. In the next, we give an overview of the resulting architecture and of the interactions
between the components of the platform.

H.3.3.3 Metacomputing Session Example .

Figure H.7 shows the architecture of the metacomputing platform in a general way. The purpose of this
section is to show how a metacomputing session that uses CORBAworks.

data transmission

problem submission I

FIG. H.7 - An example of a metacomputing session using the common interface (c=a*b ).

First of all, servers have to be registered within the agent with details about their features (e.g., problems
to solve, CPU, memory available, ...). When a client begins a metacomputing session, it has first to look
for the reference of the agent upon the system using the CORBA naming service. Now, it is able to export
data. Exported data have a reference in the location service of the agent. Then, when the client submits a
problem to the metacomputing platform, it invokes a method of the agent. Parameters of this submission
are the problem to solve and the involved exported data. This way, the agent is able to choose a server
to perform the submitted problem using both its trading and location services. The components that own
involved data are also invocated to send them to the chosen server. The computation is launched when all
data are received. The return of these different methods is a reference to the result. Then the client is able
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to retrieve this result, if necessary, or to submit another problem using it. So, this kind of session allows the
system to reduce the transmission data over the network.

This example illustrates the ease of the design of data persistence. In the same way, several exten-
sions can be specified for a more complex data management, e.g., data duplication, lazy copy, .... Moreo-
ver, CORBA allows a flexible client/server programming by allowing communications without permanent
connection between components of the system.

H.3.4 Parallel Direct Solver for Sparse Symmetric Positive Definite Systems

As a first target of the computational servers approach in SCILAB,,, we chose an efficient parallel soft-
ware processing chain able to solve large linear systems with direct method called PASTIX. This project
is developed by the ALiENor team from LaBRI. Solving large sparse symmetric positive definite systems
Az = b of linear equations is a crucial and time-consuming step, arising in many scientific and enginee-
ring applications. PASTIX focuses on the block partitioning and scheduling problem for high performance
sparse LDLT factorization without pivoting on parallel/distributed architectures; we consider a parallel
supernodal version of sparse LD L* factorization with total local aggregation. In [22], a first version descri-
bing a mapping and scheduling algorithm for 1D distribution of blocks was presented. Then, an original
algorithm based on a mixed 1D /2D block distribution has been presented in [23]; it computes an efficient
static scheduling that fully drives the block computations of the parallel solver. Parallel experiments were
run on an IBM SP2%, whose nodes are 120 MHz Power2SC thin nodes. These results show that our PASTIX
software compares very favorably to PSPASES [26].

We have implemented a PASTIX server for NETSOLVE, and defined an interface to perform globally or
separately the whole steps of our parallel software chain. The integration of PASTIX into SCILAB,, is now
effective and we are currently working to improve data persistence into that server. First experiments on
irregular industrial problems are promising. However, they show that the initialization of the coefficients
of the matrix is a time consuming step. Indeed, the storage format used by the SCILAB,, platform must be
more compatible with the PASTIX data structures ; we currently use the RSA sparse matrix format as input
for the server.

H.3.5 Visualization of Distrib uted Data

Industrial applications mainly use standard data structures such as matrices, but most of the time pro-
vide a specific problem-oriented implementation, e.g., Compressed Sparse Column (CSC). Specific imple-
mentations are used especially often when dealing with large sparse and irregular data structures, such as
matrices coming from the domain of finite elements. The gap between the implementation and the abstract
data structure it implements is even bigger when considering parallel applications. Hence, there is a need
for tools that make it possible for developers to visualize both their data, their structure, and the operation
that are applied to it, whatever their effective implementation and distribution are. These tools must carry
the semantics of the application and provide synthesis or filtering mechanisms that make it possible to focus
on specific aspects of the problem. Our project was first to define a framework to support the development
of such tools, and then to implement a set of software components using this framework. VISIT is one of
these tools which is developed at LaBRI. In the OURAGAN project, our goal was to integrate VISIT as a
visualization server for SCILAB,,. In the following, for illustrative purpose, we focus on its integration with
the PASTIX computational server.

Our approach consists in providing support for using sparse and irregular data-structures inside appli-
cations : we want to provide tools dealing with such data structure at a high level of abstraction. To achieve
this goal, we use a model with four levels : (1) the Implementation Graph describes the implementation of the
data structure in terms of data items and access functions, i.e., the way they are accessed within the appli-
cation, for instance CSC storage for a matrix; (2) the Abstraction Graph describes the abstract data structure,
e.g., a matrix; (3) the Mapping Graph describes the relationship between the implementation graph and the
abstraction graph. In this graph, a node is defined as a pair containing both a node of the abstraction graph
and a set of nodes of the implementation graph (an empty set matches a hole in a sparse data structure);

2The IBM SP2 of the CINES, located in Montpellier, France.
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(4) the View Graph, this level is used for synthesis and filtering of information, e.g., it makes it possible to
focus on a column of a matrix.

Based on this model, we have developed libraries to abstract from implementation and distribution
of data structures. These libraries allow the manipulation of the data structures at any level contained
within our framework, while keeping the same efficiency when working at the mapping graph level or at
the implementation level. Using our libraries, high level tools work only with graphs, which they can for
instance go through to achieve some operations. It is possible to attach information to any node of any of
the graphs. This feature is used by VISIT (see [12] for details). For the visualization of large matrices, VISIT
uses the MatView software [30].

The PASTIX code is basically made up of a set of tasks, one for each matrix block. The distribution of
these data blocks infers the distribution of the tasks on the processors of the parallel computer. It seems
interesting to observe the execution of PASTIX in terms of distributed data blocks. It should be noted that
the distribution is irregular and is computed in an initial step. We have described the structure of the data
storage used in PASTIX as an implementation graph and a mapping graph. Figure H.8 shows the distri-
bution of data blocks, the abstraction graph being the full matrix; each processor has its own grayscale.
Figure H.9 is a MatView zoom of the lower right corner of the matrix. The data that are used come from
the Oilpan of the Harwell-Boeing Sparse Matrix Collection and is of size 75000 x 75000. The target parallel
computer is an IBM SP2 with 16 processors.

We are currently instrumenting PASTIX in order to generate traces in terms of access to data blocks. This
will make it possible to show the dependencies between data tasks/blocks in terms of remote read, remote
write, local read an local write operations.

|

FIG. H.8 — Matrix blocks distribution. FIG. H.9 — A MatView zoom.

H.4 Conclusion and future work

Matlab is an interesting approach to Problem Solving Environments. In this paper, we have presented
a parallel version of SCILAB, a Matlab-like tool developed at INRIA. Two approaches have been presented.
The first one duplicates SCILAB processes on different processors and then uses either message passing with
PVM or MPI or high performance numerical routines with ScaLAPACK (in-core and out-of-core and with or
without operator overloading). The second one uses an improved version of a high performance Network
Enabled Server, NETSOLVE. We added an accurate evaluation of the performance of the metacomputing
platform and data persistence on the servers which avoids too many exchanges between the client and the
servers and allows redistribution of data between servers. We also presented how we manage two interfaces
for the communications between the different components of the tool, i.e., sockets and CORBA.

Concerning the SCILAB processes duplication, the SCILAB interpreter should be able to cast between
different data-types when needed. For example, this is the case when computing the product of one (in-
core) distributed matrix with one out-of-core matrix. Similarly, the product of two in-core (resp. out-of-core)
distributed matrices may lead to one out-of-core (resp. in-core) matrix. Cast can be implemented in two
ways. The first way consists in writing computation routines for the different combinations of data-types
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and call them appropriately. The second way consists in defining new cast operators to promote the lower
data-types (e.g., distributed in-core) to bigger ones (e.g., out-of-core) and then do the computation. This
solution is easier to implement because there are few cast operators to develop. To achieve a fully functional
out-of-core extension of SCILAB, the main job is to develop a lot of out-of-core routines and interface them.
Another way consists in defining new operators which allow selection of in-core (distributed or not) blocks
of out-of-core matrices. Then, with these new operators, new out-of-core functionalities can be directly
written using the built-in programming language of SCILAB. The prototyping and development of new
out-of-core functions should be made easier.

Another future work consists in designing a scalable, portable and hierarchical set of agents to improve
the Network-Enabled Servers part of our developments. To achieve this goal, we are currently designing
DIET, a Distributed Interactive Engeeniering Toolbox [16]. We also would like to add parallel libraries (like
ScaLAPACK or PETSc) as computational servers and to handle the redistribution of distributed data bet-
ween servers on a heterogeneous platform. This is mandatory if we want to be independent of SCILAB,
and port our tools on a real grid platform involving different clusters and different networks, as the one
connecting several research centers (and their clusters) from INRIA with a 2.5 Gb/s network®.
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.1 Introduction

Huge problems can now be computed over the Internet thanks to Grid Computing Environments [5].
Because most of current applications are numerical, the use of libraries like BLAS, LAPACK, ScaLAPACK or
PETSc is mandatory. The integration of such libraries in high level applications using languages like Fortran
or C is far from being easy. Moreover, the computational power and memory needs of such applications
may of course not be available on every workstation. Thus, the RPC [8, 9] seems to be a good candidate
to build Problem Solving Environments [6] on the Grid. Several tools following this approach exist, like
Netsolve [12], NINF [13], NEOS [11], or RCS [2].

This paper presents the architecture of DIET (Distributed Interactive Engineering Toolbox), a hierar-
chical set of components to build Network Enabled Server (NES) applications. Our target platform is the
fast network VIHD connecting several research centers (and their clusters) from INRIA. This document is
organized as follows : Section 1.2 presents the overall architecture of the DIET platform and its main compo-
nents. Section 1.3 shows how CORBA can be used to connect the different components of DIET. In Section 1.4,
we give the algorithms used to discover software and hardware resources that are able to solve a problem
sent by a client. We conclude our discussion in Section 1.5 with an summary of the DIET architecture, and
of the major challenges in defining such systems and implementing a prototype.

.2 DIET architecture and related tools

In this section, we give some details about the architecture of DIET and we present the different compo-
nents involved in its hierarchy. In [9], the authors give a general overview of NES environments. Usually,
such environments have five different components : clients that submit problems to servers, servers that
solve problems sent by clients, a database that contains informations about software and hardware resources,
a scheduler that chooses an appropriate server depending of the problem sent and the informations contai-
ned in the database, and finally monitors that get informations about the status of the computational re-
sources.

In DIET, a server is built upon Computational Resources Daemons (CRD) and a Server Daemon (SeD). We
have a hierarchical set of agents including Leader Agents (LA) and Master Agents (MA). A redirector (ReD) is
used to choose a master agent which is close to the client. Now we detail the basic functionalities of these
different components. An overview of tools used in DIET (SLIM & FAST) is also given.

[.2.1 DIET components

Figure 1.1 shows the hierarchical organization of DIET. The dif-
ferent parts of this architecture are the following :

Computational Resour ces Daemon (CRD) : A computational
resource is a set of hardware and software components that
can perform sequential or parallel computations on data
sent by a client (or an other server). On an interactive ma-
chine, each node should have a CRD. In other cases (like
batch systems), computations are launched directly from
the Server Daemon.

Server Daemon (SeD) : A SeD is the point of entry of a com-
putational server. It manages a pool of CRDs. The informa-
tions stored on a SeD are the list of the data available on
a server (eventually with their distribution and the way to
access them), the list of problems than can be solved on it,
and every informations concerning its load (available me-
mory, number of available CRDs, ...).

F1G. 1.1 - DIET overview.
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Leader Agent (LA) : A LA can be the link between a Master Agent and a SeD or another LA, between
another LA and a SeD or between two LAs. Its goal is to transmit requests and informations between
MAs and SeDs. The informations stored on a LA are the list of requests and, for each of its subtrees,
the number of servers that can solve a given problem and informations about the data distributed in
this subtree.

Master Agent (MA) : A MA is directly linked with client components. Its receives computation requests
from clients and choose the SeD which can solve the problem the fastest. A MA owns the same infor-
mations as a LA, but it has a complete view of the problem that can be solved and the data that are in
all its subtrees.

Redirector (ReD): The ReD is the main point of entry of DIET. It is unique and used by the clients at their
connection to know the address of the most appropriate MA.

Client : Many kinds of clients should be able to connect to the DIET system. A problem can be submitted
from a web page, a problem solving environment such as SCILAB, a free implementation of Matlab,
or a compiled program.

[.2.2 SLIM : Scientific Libraries Metaser ver

SLIM'’s goal is to make the junction between problems submitted by the clients and the implementa-
tions available on the servers. In most case, there is no one-to-one mapping : a single problem can be solved
by many implementations from several libraries, while another problem may need more than one com-
putational step to be solved. For example, if the user wants to solve a system of linear equations with a
sparse matrix, depending of the data themselves, it can be solved by a direct solver or by a preconditioner
followed by a iterative solver. Sequential and/or parallel version of the routines may be available.

The main problem of this approach is to find an unified way to express the problems and data descrip-
tions. One could use the description problem language used in NETSOLVE, but this not a standard, and it
lacks a way to express parallel functions. The CORBA interface repository would be an alternative for this,
but it was mainly designed for applications as finances or medicine. No service for scientific computation
exists so far in the CORBA norm either. Indeed, SLIM could be seen as a good candidate for a CORBA service
to discover available resources in a grid environment.

As our first prototype was based on SCILAB, we decided to use the name of the built-in functions as first
problem description metalanguage. Even if this approach is satisfying in this context, it lacks of generality,
and we are thus currently working on defining a better solution based on the GAMS [3] problem taxonomy.

All needed informations are stored in a LDAP [7] tree. LDAP is a distributed database protocol which
was chosen for its read and search optimizations. Furthermore, LDAP is widely used in the grid community.

1.2.3 FAST : Fast Agent's System Timer

FAST is a tool for dynamic performance forecasting in a Grid environment. As shown in Figure L2,
FAST is composed of several layers and relies on low level softwares. First, it uses a network and CPU
monitoring software to handle dynamically changing resources, like workload or bandwidth. FAST uses
the Network Weather Service (NWS [14]), a tool started at the University of California San Diego and now
based at the University of Tennessee Knoxville. This is a distributed system that periodically monitors and
dynamically forecasts the performances of various network and computational resources. The dynamic
data storage is also handled by NWS. The dynamic data acquisition module of FAST uses and enhances
NWS. In fact, if there is no direct NWS monitoring between two machines, FAST searches automatically for
the shortest path between them in the graph of monitored links. It estimates the bandwidth as the minimum
of those in the path and the latency as the sum of those measured.

Moreover, FAST includes routines to model the time and space needs for each triplet { problem; ma-
chine; parameters set }. They are based on benchmarking at installation time on each machine for a re-
presentative set of parameters and polynomial data fitting. To store these static data, FAST uses the same
LDAP-tree as SLIM. The user API of FAST is composed of a few set of functions that combine static and
dynamic data acquired from low level software to produce ready-to-use values. Thus, FAST clients like
DIET components, can get for example the time needed to move an amount of data between two SeDs, the
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time to solve a problem with a given set of CRDs managed by a SeD, or the addition of these two times.
The static data acquisition in FAST concerns the theoretical parameters of computers and communication
links of the system.

.2.4 SLIM-FAST interactions

To give a first overview of interactions between SLIM and FAST, we consider a basic system composed
of a unique agent with several servers. The real algorithm with several agents organized in a DIET hie-
rarchy will be given in Section 1.4.3.2. Figure 1.2 shows the different steps of a problem submission in this
case.

The agent send the descriptions of the problem to solve and the involved data to SLIM(1). SLIM contacts
the database system and searches out the set of implementations which are able to solve the submitted
problem. For example, if the problem is a multiplication of dense matrices, the dgemmfunction of the Sca-
LAPACK library would be a candidate (2). This set is then sent to FAST to forecast the execution time of
each solution for each server (3). FAST acquires the static data from the database (4) and the dynamic data
from NWS (5). Finally, these data are combined by FAST in a list of couples {server; estimated time} and
returned to the calling application (6).

.3 CORBA based comm unication layer

In order to implement a network enabled problem solver, one can choose between many communica-
tion layers. Low level layers like the socket interface eventually allow the best performances. Higher level
layers such has ones complying with the CORBA norm although provide interfaces for a easier and quicker
development. In this section, we give an overview of the CORBA norm and discuss the opportunity to use
a CORBA implementation in high performances distributed applications.

[.3.1 The CORBA norm

The CORBA norm, defined by the Object Management Group (OMG), provides a standard and transparent
interface for the development of object oriented distributed applications over heterogeneous networks.
CORBA systems are built around an Object Request Broker (ORB), which is a communication bus between
CORBA objects. Communications are initiated by method invocations between objects that can be located
on different hosts.

Different CORBA implementations are available, each one running on a wide variety of platforms. In-
teroperability between these implementations is granted by the General Inter ORB Protocol (GIOP). Thus,
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CORBA applications are highly portable and many users are likely to be able to access CORBA services.
From the developer’s point of view, CORBA can be used with most common programming languages, in-
cluding C, C++ and Java.

[.3.2 CORBA features

From the developer’s point of view, CORBA provides a high level object oriented interface for the deve-
lopment of distributed applications. Every object that wishes to export some of its methods on the network
registers itself to the ORB. It then gets an Object Reference that allows other object to invoke it without being
concerned by its localization. To allow this transparency on heterogeneous networks, an Interface Description
Language (IDL) compiler is provided with all ORBs. This compiler automatically generates code that allows
the marshaling and demarshaling of the application’s data structures. This mechanism is more optimized
than the XDR protocol, the data being sent without modifications when sending them between to a compa-
tible architecture. Dynamically typed data and types descriptions downloading are also supported by the
generated code.

Thus, CORBA systems provide a remote method invocation facility with a high level of transparency.
This transparency should not dramatically affect the performances, communication layers being well opti-
mized in most CORBA implementations. In fact, with a low bandwidth network, performances can be better
with CORBA than with the use of lower level protocols like RPC/XDR. Moreover, in such an environment,
the communication time with CORBA is the same as with sockets plus a constant value [1]. We currently
project to extend these benchmarks to high performances networks.

[.3.3 Conclusions about CORBA

Grid computing is a very active research domain. Existing platforms are usually subject to frequent ex-
perimental modifications and feature add-ons. CORBA systems allow an easier development and a greater
maintainability of the code. It is well suited to resource allocation in distributed systems, which is a key
point in Grid environments. The performances do not seem dramatically affected by these features. We
thus propose that CORBA systems are one of the alternatives of choice for the development of Grid specific
services.

[.4 DIET initialization and operation

In order to design a multi-agents Grid system, one should specify the order in which components should
be run and the administration policy of the system and the distributed algorithms which allow the place-
ment of the computations on the pool of servers.

In this section, we detail the former issue by giving an example of a simple Grid system initialization.
Then, we discuss the way a server is chosen to solve a given problem by taking into account the communi-
cation and computation times.

[.4.1 DIET initialization

Figure 1.3 shows each step of the initialization of a simple Grid system. The architecture is build in the
hierarchical order, each component contacting its father : being the entry point of the Grid system, the ReD
is the first entity to be started (1). Once running, it waits for the connection of a MA (2).

Then, a LA can be launched and connected to the MA (3). At this point of the system initialization,
two kinds of components can connect to the LA : a SeD (4), which manage some computation resource, or
another LA (5), to add a hierarchical level in this branch. The system is then up, and a client can contact the
Redirector to find the nearest MA (6).

The father node being a parameter of each component, and each component transmitting the local confi-
guration change to its father, the system administration can also be hierarchical. For example, a MA can
manage a domain like an university, providing a privileged access to the users of this domain. Then each
laboratory can run a LA, while each team of the laboratory running some others child-LA to administrate
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FIG. 1.3 — Initialization of a DIET system.

its own servers. This hierarchical administration of the system permit to change the configuration of a part
without interfering with the rest.

[.4.2 NES scenario

It is of the Redirector’s responsibility to collect informations about MAs and to find which one is best
suited for a new client. Once this MA is identified, the client can submit a problem through it. To choose the
most appropriate server to solve the problem, the MA propagates a request in its subtrees to find both invol-
ved data and capable servers. This process is detailed in the next section. Then, the MA returns the address
of the chosen server to the client and performs the transfer of persistent data involved in the computation.
The client communicates its local variables to the server which can then solve the problem. Results may be
sent back to the client or kept in place for the next computational step.

1.4.3 Solving a problem

We assume that the architecture described in the previous section owns several servers which are able
to solve the problem and that every data needed by the computation is available on only one server over
the whole architecture. The example presented in Figure 1.4 considers a submission of problem F() using
data Aand B.

The algorithm presented here allows a MA to choose one of the servers it manages to execute a compu-
tation. This decision is taken in three steps :

— locating the data involved and the capable servers by sending a request to computational servers,

while propagating a MA request to its subtrees;

- evaluating the computation time on all capable servers, while sending the answer to the request back

to the MA ;

— choosing a server and ordering it to perform the computation. This is done by the MA once it has got

the answers.

In order to simplify the discussion, this section only refers to a system involving only one MA. The
algorithms presented here are easily extended to the general case by broadcasting computation request to
others MAs.

1.4.3.1 Data and server localization

Request structure  In order to choose a server, the MA must locate the servers that are able to solve the
submitted problem and the data involved in the computation. This is done by sending a request structure to
the servers concerned. This structure, shown on Figure 1.5(a), contains two fields : the problemNickname
and a list of attributes of the involved data, including details on their size and properties in order to
evaluate the computation and communication times.

Algorithm ~ When the MA receives a request from a client, it builds the request structure and sends it to
all its children which either own one of the needed data or are able to solve the problem. The request is
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FIG. 1.4 — Problem submission example.
FIG. 1.5 — Computation request and response struc-

tures.

transmitted from father to child in the tree following this scheme down to SeDs. Each LA labels its children
reached by the request and waits for their response, which we discuss in the next section.

1.4.3.2 Computation and comm unication times evaluation

Once the request structure reaches the concerned SeDs, they initiate a response structure and send it
back to their father.

The response structure  Described in Figure 1.5(b), it contains three fields :

myName : the name of the component sending back this response ;

data : this array has an entry for each variable involved in the computation, each one containing two fields:

localization : the name of the component owning the data, if it is known (this field takes a null
value otherwise) ;

timeToMe : estimation of the communication time to bring the variable from the component sen-
ding the structure, if its localization is known;

comp : this array contains an entry for every server (able to satisfy the request) known at this point of the
tree. Three informations are kept for each server : its name; tComp, the estimated computation time
to satisfy the request; tComm) an array containing the estimated time to bring each variable involved
to the server. These value are computed dynamically while sending back the result to the MA with
the following algorithm.

Algorithm  This algorithm is divided in three parts :

1. Initialization : When a computation server receives a request, it sends a response structure to its
father. It fills the data field for the variables it owns, leaving a null value for the others. If the server
can solve the problem, it also puts an entry in the comp array with its evaluated computation time (in
the tComp field). This is a call to FAST.

2. Aggregation : Every LA gathers its children’s responses and aggregates them into one structure. The
fields concerning communication times are gradually filled as the structures come back to the MA.
For this, FAST compute the transfer time of data to the capable servers, combining informations from
the monitoring and the data attributes. This transfer will use the shortest path among those which are
monitored. This path only uses the links between a father and its children or between two brothers as
shown on Figure L.3. Figure 1.6 gives the complete algorithm used by LAs to aggregate their children’s
responses.
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3. Use : When the responses come back to the MA, it can use it to take a decision. The evaluated compu-
tation and communication times are used to find the server with the lowest response time to perform
the computation.

However, we have to consider the case where a server is chosen twice whereas the first computation
has not already started when the second problem was submitted. The penalty of the first computation
problem could not be considered in the computation evaluation time of the second one. This a classical
problem in dynamic performance evaluation. We propose to delay the evaluation of the computation
time at the level of the master when it has to choose the server. In this case, we know the history of
the problem submissions, so we can take them into account in the final evaluation.

for each data Ddo
if none of my descendants owns Dthen
timeToMe =0

else if one of my children references Dthen
timeToMe =timeToMe for this child + time to send D form this child to me

else if Dis not known by any of my children then
if a server S of my sub-tree can solve the problem then
D will be sent through me to Sif it’s selected.
= Increase D's tCommfor each server
else
Dwill be sent to a capable server S following a path in which I am not involved.
= End tComnTs computation for my descendants.
end if
end if

end for

FIG. 1.6 — Complete algorithm of a LA to aggregate the results.

.4.4 Fault tolerance in DIET

Fault tolerance is a key issue in problem solving environments. In the DIET system, two kinds of faults
can occur. First, an agent can die unexpectedly. The knowledge of any agent being derived from its chil-
dren’s knowledge, it can be reconstructed easily. So, the agent can be started again, or its children can be
attached to another agent. The second kind of failure is the unexpected death of a computational server.
When a server fails, data and temporary results may be lost. To decrease this risk, a checkpointing system
can be implemented by the computation servers. A checkpoint corresponds to an intermediate result in
the process of solving a problem. When a checkpoint is reached, the intermediate results are saved to disk
(or sent to a data repository). So, if the server fails later, the computation can be restarted from the last
checkpoint reached.

1.4.5 NES Management

The great variety of metacomputer components (computer, networks, files, software services) and their
dynamically behavior poses special problems for the resource management point of view. In such archi-
tecture, management will play a major role and it appears very important to be able to offer a unified
framework for the management of network, services and applications. The framework implies the defini-
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tion of an architecture that guaranties the interoperability between applications through the portability of
management informations wherever they are originated.

We claim that middleware layers based on Java technologies, and more especially JMX (Java Mana-
gement Extensions) [10], offer new opportunities to support network enabled server application in a grid
environment. Our approach is based on WEBM (Web-Based enterprise Management) which the standardi-
zation effort is relayed by the DMTF (Distributed Management Task Force) in order to take in account :

— Offering an homogeneous view of all managed resources whatever is their nature, location and/or

access methods;

— Keeping the legacy by integrating information models, management architectures and deployed pro-

tocols;

— Offering an infrastructure to exchange management information between applications.

We need to define an information model based on CIM (Common Information Model) related to the
grid network approach. This model will allow to define :

— The organizational model; specify a functional architecture by specifying the active participants in
the management process, their repartition, their function and their respective role;

Informational model;
Functional model ;

— Model of communication.

From on our model based on CIM, the implementation of the management components is done by using
JMX that takes advantage of both Java’s features and agent-based architecture. Indeed, the management
system have the following features :

Extensibility : since JMX is based on JavaBean, JMX agents can dynamically incorporate new functio-

nalities from remote class server;

Interoperability : JMX agents can be integrated in CIM/WEBM and CORBA ;

Reusability : one can integrate externally available functionalities developed as JavaBean;

— Platform independence : JMX can be deployed in heterogeneous environments where several plat-
forms coexist.

.5 Conclusion and future work

In this paper, we have presented our view of a scalable Network Enabled Server system. We believe that
hierarchy is mandatory when building such environments for the Grid. When thinking about Grid Com-
puting, scalability should be one of the main concerns of developers. We propose a hierarchical approach
to Network Enabled Servers using existing software like NWS or CORBA.

Our future work is to first test this approach on real applications. As our target platform allows 2.5
Gb/s communications between several INRIA research centers in France, connecting several clusters of
PCs and parallel machines, we think that tightly coupled applications written in a RPC mode could benefit
of such an approach. Another problem we would like to address is the optimization of data distributions
for parallel library calls using a mixed data and task parallel approach. We also would like to connect our
developments to infrastructure toolkits like Globus to benefit from the development of security, accounting,
and interoperability services.

A concerted effort is on his way to define the overall architecture and basic functionalities of Grid envi-
ronments [4]. A working group is dedicated to Advanced Programming Models which include, of course,
Network Enabled Solvers [8, 9]. We think that this effort is very important to be able to get efficient software
infrastructure soon and we would like to be part of it.
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